Spark(29) -- SparkSQL底层如何执行及分布式SQL引擎

SparkSQL不同于RDD,它利用Catalyst优化器对SQL和Dataset代码进行解析和优化,生成逻辑和物理执行计划。Catalyst包括Parser、Analyzer和Optimizer,通过规则和代价优化生成高效执行策略。此外,SparkSQL提供了CLI和ThriftServer JDBC/ODBC Server,支持Beeline和JDBC/ODBC客户端进行交互式分析。
摘要由CSDN通过智能技术生成

1. RDD 和 SparkSQL 运行时的区别

RDD 的运行流程
在这里插入图片描述
大致运行步骤

  • 先将 RDD 解析为由 Stage 组成的 DAG, 后将 Stage 转为 Task 直接运行

问题

  • 任务会按照代码所示运行, 依赖开发者的优化, 开发者的会在很大程度上影响运行效率

解决办法

  • 创建一个组件, 帮助开发者修改和优化代码, 但这在 RDD 上是无法实现的

为什么 RDD 无法自我优化?

  • RDD 没有 Schema 信息
  • RDD 可以同时处理结构化和非结构化的数据

SparkSQL 提供了什么?<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

erainm

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值