- 博客(7)
- 收藏
- 关注
原创 pandas处理德育分工时赋分
从小不会excel的我只能选择求助pandasimport pandas as pddeyufen=pd.read_excel("C:/Users/PengY/Desktop/deyu.xlsx")deyufen.iloc[:,1]=deyufen.iloc[:,1].apply(lambda x:x/32)deyufen.to_excel('chuli.xlsx')print(deyufen)虽然短短代码花了我很久时间,不管至少用了...
2022-05-25 13:28:52 68
原创 基于数据类型的数据预pre-processing
只是自己的复习笔记,没打算让别人看懂我知道的数据类型:1.连续或离散型型数值2.排序型或分类型3.时间和空间坐标4.文本型(暂时不管)数据浅浅的可视化:今天浅浅学了一招dataset[].hist(figsize=()),能画出柱状图数据处理方式:我们一个一个来谈数值型:标准化:Minmaxscaler[0,1] standardscaler maxabsscaler[0,1]正则化:normalizer(norm="L1"or"L2")数据的二值化:
2022-05-24 23:28:51 80
原创 序变量与分类变量处理
1.方法:sklearn.preprocessing.LabelEncoder或者pandas.factorize123编码不如直接onehotonehot还有groupby功能,这个特征创造?
2022-05-24 20:57:40 167
原创 数值型变量处理
首先注册账号:可能要使用到vpn,没有可以不学了(bushi)进行第一次competition:从官网下载数据集,打开文件就长这个样(也可以head)可以看出来有很多很扯淡的数据 数据预处理:1.特征选择,特征构建,两者均依赖于模型。对于数据预处理,模型可分为两种。树状与非树状。而处理方法可采用以下:1.scaling 缩放 minmaxscaler 最大最小缩放(还有standardscaler)此处可采用dataset[[...
2022-05-24 20:46:39 184
原创 线性规划pythonscipy
from scipy import optimize as opimport numpy as npc=np.array([-2,-3,5])aub=np.array([[-2,5,-1],[1,3,1]])bub=np.array([-10,12])aeq=np.array([[1,1,1]])beq=np.array([7])x1=[0,None]x2=[0,None]x3=[0,None]ans=op.linprog(c,aub,bub,aeq,beq,bounds=(x1,x2.
2022-05-16 10:38:00 150 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人