一、前言
在前面AVL树的学习中,我们知道了如何通过对平衡因子的调整、判断和旋转得到一棵严格平衡的二叉搜索树,虽然AVL树能够降低搜索树的高度,加快搜索效率,但是频繁的旋转导致创建一棵AVL树的代价并不小,因此,红黑树诞生了。
二、红黑树的概念
红黑树是一种自平衡的二叉搜索树,相对于AVL树的严格平衡,它遵循一种相对平衡,即最长路径不超过最短路径的二倍。红黑树由 Rudolf Bayer 于1972年发明,在当时被称为对称二叉B树(symmetric binary B-trees)。后来在1978年被 Leo J.Guibas 和 Robert Sedgewick 修改为如今的红黑树。
红黑树的应用十分广泛,它能够在O(logN)的时间复杂度内完成搜索、查找和删除操作,后面要学习的C++容器map和set,其底层就是用红黑树实现的
三、红黑树的性质
红黑树之所以叫这个名字,是因为其每个节点中都增加了一个颜色变量,该变量不是红色就是黑色
红黑树的以下几个性质,是必须严格遵守的,否则就不能被称为红黑树:
- 性质1:每个节点不是红色就是黑色
- 性质2:根节点必须是黑色的
这里的根节点不包括子树的根节点,而是整棵树唯一的_root节点
所以红黑树的左右子树不是红黑树(区分:AVL树的左右子树也是AVL树)
- 性质3:可以存在两个或多个连续的黑色节点,但是不能存在连续的红色节点
- 性质4:每条路径上的黑色节点数量必须相同
性质2、3和性质4就决定了红黑树的最长路径不超过最短路径的二倍,例如:
图中的红黑树已省略其他节点,只保留最长路径和最短路径
可以看到此时路径中的黑色节点数量相同,因此无法在最长路径中再添加一个黑色节点;又因为不能存在连续的红色节点,而最长路径中的最后一个节点为红色,因此也无法在最长路径中添加红色节点。
通过观察可以发现,在红黑树中全黑的路径必然是最短路径,而一黑一红交替的路径是最长路径
- 性质5:红黑树的空节点(NIL节点)默认为黑色
四、红黑树节点的定义
红黑树的节点与AVL树的节点大致相同,只是没有了平衡因子,取而代之的是颜色
每个新节点的初始颜色都设置为红色,原因会在后面的插入操作中讲
我们可以用一个枚举来列举颜色
enum Colour
{
RED,
BLACK
};
template<class T>
struct RBTreeNode
{
RBTreeNode<T>* _left;
RBTreeNode<T>* _right;
RBTreeNode<T>* _parent;
T _data;
Colour _col;
RBTreeNode(const T& data)
:_left(nullptr)
, _right(nullptr)
, _parent(nullptr)
, _data(data)
, _col(RED) //初始颜色为红色
{}
};
五、红黑树的插入
红黑树本质上也是一棵二叉搜索树,因此在插入节点时也需要遵循二叉搜索树的规则。
5.1 节点的初始颜色
在插入节点时,我们遇到的第一个问题是:为什么节点的初始颜色是红色?不能是黑色吗?
假设我们把节点的初始颜色设置为黑色,那么在我们插入一个新节点的时候会发生什么事呢?
例如:
可以发现,在插入新节点(黑)的时候,该路径的黑色节点数目发生了变化,破坏了性质4,即每条路径的黑色节点数目必须相同。
当红黑树的性质被破坏后,我们需要对其进行旋转或变色等操作使其重新成为一棵红黑树
但是因为此时性质4被破坏,我们就需要将每条路径的黑色节点数量调整到相同,同时又不能破坏其他的性质,这个过程要付出的代价是非常非常大的!
但是如果节点的初始颜色是红色,就分为两种情况:
(1)插入新节点,此时新节点的父节点为黑色
例如:
这是最理想的情况,因为此时插入一个新节点没有破坏任何一个性质,所以不需要进行调整。
(2)插入新节点,此时新节点的父节点为红色
例如:
插入新节点后,出现了连续的红色节点,性质3被破坏,需要进行调整。
可以看出,如果我们将节点的初始颜色设置为红色,在某些情况下是不需要进行调整的
而当我们检测到插入的新节点的父节点是红色时,才需要进行调整,调整的过程也很简单,接下来我们就会讲到。
至此,我们可以写出不包括调整部分的插入函数的代码了:
bool insert(const pair<const K, V> &kv)
{
if (_root == nullptr)
{
_root = new Node(kv);
_root->_col = BLACK;
return true;
}
Node *parent = nullptr;
Node *cur = _root;
while (cur)
{
parent = cur;
if (kv.first > cur->_kv.first)
cur = cur->_right;
else if (kv.first < cur->_kv.first)
cur = cur->_left;
else
return false;
}
cur = new Node(kv);
cur->_col = RED; // 新节点默认为红色
if (kv.first > parent->_kv.first)
{
parent->_right = cur;
cur->_parent = parent;
}
else
{
parent->_left = cur;
cur->_parent = parent;
}
//调整部分
_root->_col = BLACK; // 无论如何,都将根变为黑色
return true;
}
5.2 红黑树的调整(附动图)
当插入的新节点的父节点是红色时,就出现了连续的红色节点,此时我们需要对红黑树进行调整
调整的时候,又分为三个情况:
(1)插入新节点,父节点为红,叔叔节点存在且也为红
这种情况是最好处理的,将父节点和叔叔节点变成黑色,再将祖父节点变为红色,这样既恢复了性质3,又不会破坏性质4
需要注意的是,祖父节点不一定为根节点,其父节点可能也为红色,所以需要继续向上调整。
(2)插入新节点,父节点为红,叔叔节点不存在或存在且为黑,父节点和祖父节点的相对位置与新节点与父节点的相对位置相同
遇到这种情况,向上面这种单纯的变色已经不足以解决问题了,需要进行一次单旋后再变色
当需要旋转时,对红黑树的旋转方式和AVL树的旋转方式类似。
这里我们用叔叔节点存在且为黑的情况来进行演示:
在调整的时候,我们需要时刻遵循每条路径的黑色节点数量相同的原则,因此a、b、c中的黑色节点必定比d、e中的黑色节点数目多1个(因为叔叔节点为黑色,已经为d、e中的路径提供了一个黑色节点)
上面的情况,当父节点在祖父节点的左边且新节点在父节点的左边时,先进行右单旋再变色
但是如果当父节点在祖父节点的右边且新节点在父节点的右边时,则先进行左单旋再变色
当叔叔节点不存在时,处理方法和叔叔节点存在且为黑的相同。
(3)插入新节点,父节点为红,叔叔节点不存在或存在且为黑,父节点和祖父节点的相对位置与新节点与父节点的相对位置相反
这种情况,祖父节点-父节点-新节点的连线之间会有一个明显的折返角度,也就是说当父节点在祖父节点的左边时,新节点在父节点的右边;而当父节点在祖父节点的右边时,新节点在父节点的左边。
和AVL树的旋转类似,这种情况下需要进行两次单旋+变色
这里我们还是用叔叔节点存在且为黑的情况来进行演示:
(动图里的双旋有误,应改成两次单旋)
上面的情况,当父节点在祖父节点的左边且新节点在父节点的右边时,先进行左单旋再进行右单旋,最后变色
如果当父节点在祖父节点的右边且新节点在父节点的左边时,则先进行右单旋再进行左单旋,最后变色
当叔叔节点不存在时,处理方法和叔叔节点存在且为黑的相同。
当我们清楚了3种需要进行调整的情况后,就可以编写完整的插入函数代码了:
bool insert(const pair<const K, V> &kv)
{
if (_root == nullptr)
{
_root = new Node(kv);
_root->_col = BLACK;
return true;
}
Node *parent = nullptr;
Node *cur = _root;
while (cur)
{
parent = cur;
if (kv.first > cur->_kv.first)
cur = cur->_right;
else if (kv.first < cur->_kv.first)
cur = cur->_left;
else
return false;
}
cur = new Node(kv);
cur->_col = RED; // 新节点默认为红色
if (kv.first > parent->_kv.first)
{
parent->_right = cur;
cur->_parent = parent;
}
else
{
parent->_left = cur;
cur->_parent = parent;
}
while (parent && parent->_col == RED) // 若父节点不存在说明走到根,若父节点为黑色则不需要处理
{
Node *grandfather = parent->_parent; // 记录祖父节点
if (grandfather->_left == parent) // 父节点在祖父节点左边时
{
Node *uncle = grandfather->_right; // 记录叔叔节点
if (uncle && uncle->_col == RED) // 如果叔叔节点存在且为红色
{
// 变色
parent->_col = uncle->_col = BLACK; // 将父节点与叔叔节点都变为黑色
grandfather->_col = RED; // 将祖父节点变为红色
// 继续向上处理
cur = grandfather;
parent = cur->_parent;
}
else // 叔叔节点不存在或为黑色
{
// 需要旋转+变色
if (parent->_left == cur) // cur节点在父节点左边,右单旋
{
RotateRight(grandfather);
// 变色
parent->_col = BLACK;
grandfather->_col = RED;
}
else // cur节点在父节点右边,左右双旋
{
RotateLeft(parent);
RotateRight(grandfather);
// 变色
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
else // 父节点在祖父节点右边,和上面同理
{
Node *uncle = grandfather->_left;
if (uncle && uncle->_col == RED)
{
parent->_col = uncle->_col = BLACK;
grandfather->_col = RED;
cur = grandfather;
parent = cur->_parent;
}
else
{
if (parent->_right == cur)
{
RotateLeft(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
}
else
{
RotateRight(parent);
RotateLeft(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
}
_root->_col = BLACK; // 无论如何,都将根变为黑色
return true;
}
六、红黑树的验证
当我们完成了红黑树的插入函数,就已经可以构造出一棵树了
但是构造出的树是否符合红黑树的性质,则还需要我们进行验证
6.1 验证有序
在验证是否符合红黑树性质前,我们首先需要验证其是否是一棵二叉搜索树
在之前讲解二叉搜索树中提到过,如果中序遍历能够得到一个有序的序列,就说明是二叉搜索树
中序遍历代码如下:
void InOrder()
{
_InOrder(_root);
cout << endl;
}
void _InOrder(Node *root)
{
if (root == nullptr)
return;
_InOrder(root->_left);
cout << root->_kv.first << " "; // key/value模型,_kv是一个pair对象
_InOrder(root->_right);
}
验证:
说明符合二叉搜索树性质
6.2 验证红黑树性质
通过枚举我们就能很好的控制红黑树每个节点的颜色,所以性质1可以不用额外去验证。
而性质2、3和性质4我们可以用函数来验证,代码如下:
bool IsBalance()
{
if (_root == nullptr)
return true;
if (_root->_col == RED) //检测根是否为黑色
{
cout << "异常:根为红色" << endl;
return false;
}
// 预先求出某条路径的黑色节点数量
size_t blackcount = 0;
Node *cur = _root;
while (cur)
{
if (cur->_col == BLACK)
blackcount++;
cur = cur->_left;
}
size_t k = 0; //作为参数传入,用于统计路径的黑色节点数量
return _IsBalance(_root, k, blackcount);
}
bool _IsBalance(Node *root, size_t k, size_t blackcount)
{
if (root == nullptr) //走到路径结尾
{
if (k != blackcount)
{
cout << "异常:路径黑节点数目不同" << endl;
return false;
}
return true;
}
if (root->_col == RED && root->_parent->_col == RED) //判断是否有连续红节点
{
cout << "异常:出现连续红节点" << endl;
return false;
}
if (root->_col == BLACK) //统计黑色节点数量
k++;
return _IsBalance(root->_left, k, blackcount)
&& _IsBalance(root->_right, k, blackcount); //进行递归
}
验证:
七、红黑树与AVL树的比较
红黑树和AVL树各有各的特点。前面提到,AVL树遵循的是严格平衡,也就是左右子树高度差不超过1,虽然能够很好的控制树的高度,但是在维护严格平衡时需要进行大量的旋转,对效率有不小的损耗。
而红黑树遵循的是相对平衡,通过对性质的维护时刻保持最长路径不超过最短路径的二倍,虽然高度控制的不如AVL树,但是相对的减少了旋转等操作。
而且假设我们存入100w个数,用AVL树高度大概在20层左右,换成红黑树顶多也就40层,搜索时这相差的20层对于CPU的效率来说基本可以忽略不计,所以综合而言红黑树相比AVL树是更胜一筹的。
完.