【算法】Dijkstra求最短路算法

TOP提示:Dijkstra算法只适用于不含负权边的情况 

Dijkstra算法是一个基于贪心,广搜和动态规划 求图中某点到其他所有点的最短路径的算法 

一、步骤

首先我们先总结Dijkstra算法的完整步骤

我们需要一个dis数组存储从起点到达其他节点的最短距离,一个check数组判断从起点到某点的最短距离是否已确定,一个path二维数组存储图中从点 i 到点 j 的距离

一共循环n次(n个节点),起初将从起点到其他所有节点的距离(dis[i])初始化为最大值。

每次循环从dis数组中未确定最短路径的所有点中找出最小值的下标mini(第一次循环时最小值为起点dis[1],因为起点到自己的距离为0,其他的都初始化为了最大值),此时该最小值即为起点到该点的最短路径,在check数组中标记该点,然后计算从该点出发到达其他节点的距离,如果比原来的值更小则更新dis数组。

二、原理

贪心是其中的重要思想,为什么每次找出的最小值就是起点到该点的最短路径呢?

这就要提到为什么Dijkstra不适用于含负权边的情况了,当边的权值全部为正时,从起点经过其他的点到达最小值点的路径长度必定会大于原来的这个最小值!

例如你从起点到A点的最短路径是100,到B点的最短路径是200,那么你从起点经过B点到达A点的距离可能会比直接从起点到A点的距离短吗?除非从B点到A点的距离为负数。 

所以当我们每次扫描未确定最短路径中的所有点,找出其中的最小值,该最小值就是起点到达该点的最短路径。经过n次循环,我们就能找出起点到达所有点的最短路径 

我们以下面这道题为例实战一下:

完整代码:

#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;

const int N = 510;

int n, m, dis[N];
int path[N][N];
bool check[N];

int dijkstra()
{
    memset(dis, 0x3f, sizeof dis); //将起点到其他点的路径初始化为最大值
    dis[1] = 0; //起点到自己的距离为0
    for(int i = 1;i <= n;i++) //n次循环
    {
        int mini = -1; 
        for(int j = 1; j <= n;j++)
        {
            if(!check[j] && (mini == -1 || dis[mini] > dis[j]))
            //从未确定最短距离的点中取出最小值
                mini = j;
        }
        
        check[mini] = true; //标记该点为已确定
        
        for(int j = 1;j <= n;j++)
        {
            //以该点为基础更新其他所有点的最短距离
            dis[j] = min(dis[j], dis[mini] + path[mini][j]);
        }
    }
    if(dis[n] == 0x3f3f3f3f) return -1; //如果n号点的距离还是为最大值,说明无法到达
    return dis[n];
}

int main()
{
    //题目中说可能存在重边,所以将边的权值初始化为最大值便于比较
    memset(path, 0x3f, sizeof path);
    cin >> n >> m;
    for(int i = 1;i <= m;i++)
    {
        int a, b ,c;
        cin >> a >> b >> c;
        path[a][b] = min(path[a][b], c); //如果重边,取最小值
    }
    
    int t = dijkstra(); //Dijkstra算法
    
    cout << t << endl;
    return 0;
}
Floyd算法Dijkstra算法都是用来解图中最短路径问题的算法,但它们在适用情况、时间复杂度以及工作原理上有明显的区别。 1. **适用情况**: - **Floyd算法**是一个动态规划算法,可以解决包含负权边的图的单源最短路径问题,也能够处理所有顶点对之间的最短路径问题,即计算图中任意两点间的最短路径。 - **Dijkstra算法**通常用于带权有向图或无向图的单源最短路径问题,它不能处理包含负权边的图。该算法从一个源点开始,计算到其他所有顶点的最短路径。 2. **时间复杂度**: - **Floyd算法**的时间复杂度为O(n^3),其中n是顶点的数量。由于Floyd算法需要遍历所有顶点对,因此在处理大型图时可能会非常慢。 - **Dijkstra算法**的时间复杂度取决于所用的数据结构,通常使用优先队列(如最小堆)实现,可以达到O((V+E)logV)的时间复杂度,其中V是顶点数量,E是边的数量。因此,Dijkstra算法在单源最短路径问题中通常比Floyd算法更高效。 3. **工作原理**: - **Floyd算法**通过逐步更新一个“距离矩阵”来计算从一个顶点到另一个顶点的最短路径。该算法逐个引入每个顶点作为中间顶点,并更新任意两点间的最短路径长度,最终得到所有顶点对之间的最短路径。 - **Dijkstra算法**从源点开始,维护一个距离表,记录从源点到各个顶点的最短距离,并使用优先队列来选择当前已知的最短路径。算法不断更新这个距离表,直到所有顶点的最短路径都被找到。 总结来说,Floyd算法适用于计算图中任意两点间的最短路径,而Dijkstra算法适用于解单源最短路径问题。在实际应用中,根据问题的不同,选择合适的算法以获得最优解。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值