提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
前言
本博客为便于自己理解基于密度估计的计数方法而建立:
部分内容参考其他博客
提示:以下是本篇文章正文内容,下面案例可供参考
一、基于密度图的计数分类
基于密度图的技术方法模型思维导图:
参考自《人群计数和密度估计方法综述》
二、密度图的表示
1.二维高斯函数
定义如下:
其中σ为手动选择参数,x,y为相对于中心点的坐标参数。具体解释如下图所示:
假设现有一个5*5卷积模板,对中心位置进行高斯滤波,那么其他相对位置坐标如下:
2.实战举例
这里用一个9x9tensor标记点举例,对该卷积模板进行高斯滤波处理,取σ=1(具体大小得看你标记的物体大小),将所有坐标代入二维高斯函数可得最终高斯核结果。
d = torch.tensor([
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0,