Orange3实战教程:实例---文本分类

文本分类

     我们可以使用预测模型按作者、类型、情感等对文档进行分类。在此工作流中,我们根据文档的Aarne Thompshon Uther索引对文档进行归类,这是故事的主题定义。我们使用两个简单的学习器,Logistic回归和朴素贝叶斯,两者都可以在诺谟图中检查。

     完整的流程如下:
在这里插入图片描述

步骤1:加载文件

     在文本挖掘分类中找到语料库组件,拖动工作台,并加载格林的故事文件:
在这里插入图片描述

步骤2:预处理

     拖动转换分类里的预处理组件并连接,创建词袋的tokens:
在这里插入图片描述

步骤3:词袋模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

err2008

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值