Orange3实战教程:模型---随机梯度下降

随机梯度下降(Stochastic Gradient Descent)

通过随机梯度近似法最小化目标函数。

输入

数据:输入数据集
预处理器:预处理方法(可选)

输出

学习器:随机梯度下降学习算法
模型:训练后的模型

随机梯度下降(SGD)部件使用随机梯度下降算法,通过线性函数最小化选定的损失函数。该算法每次仅考虑一个样本以近似真实梯度,并根据损失函数的梯度同步更新模型。对于回归任务,它返回最小化损失和的预测器(即 M 估计量),尤其适用于大规模和稀疏数据集。

  1. 指定模型名称:默认名称为“SGD”。
  2. 算法参数
    • 分类损失函数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

err2008

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值