T1:三个元素
给定一个长度为 n 的数组 r1,r2,…,rn。
请你找到其中的三个元素 ra,rb,rc,使得 ra<rb<rc 成立。
输入格式
第一行包含整数 n。
第二行包含 n 个整数 r1,r2,…,rn。
输出格式
共一行,输出 a,b,c。
注意,题目要求输出的是元素的下标。
如果方案不唯一,输出任意合理方案均可。
如果无解,则输出 -1 -1 -1。
数据范围
前三个测试点满足 3≤n≤10。
所有测试点满足 3≤n≤3000,1≤ri≤109。
输入样例1:
6
3 1 4 1 5 9
输出样例1:
4 1 3
输入样例2:
5
1 1000000000 1 1000000000 1
输出样例2:
-1 -1 -1
输入样例3:
9
10 10 11 10 10 10 10 10 1
输出样例3:
9 8 3
打比赛的时候一直在想着先排序,然后找排序后的前三个元素在原数组中的下标,但是一直过不了。y总讲的是用一个map来存储每一个元素的下标,若有重复的就任意存储一个。这样最后只需要输出map中的前三个元素的下标就好了(map是一个有序的,unordered_map是无序的)
#include <iostream>
#include <cstring>
#include <algorithm>
#include <map>
#include <vector>
using namespace std;
int main(){
int n ;
cin >> n ;
map<int , int> mp;
for(int i = 1 ;i <= n ; i++){
int x ;
cin >> x;
mp[x] = i ;
}
if(mp.size()< 3) cout << "-1 -1 -1" << endl;
else{
vector<int> res ;
for(auto [k ,v] : mp){
res.push_back(v);
}
for(int i = 0; i < 3 ;i++){
cout << res[i] << ' ' ;
}
}
return 0;
}
T2:收集卡牌
某干脆面厂商在每包面中都放置有一张武将卡。
武将卡共分为 n 种,编号 1∼n。
当集齐 1∼n 号武将卡各一张时,就可以拿它们去换大奖。
为了换大奖,李华先后购买了 m 包该品牌的干脆面。
其中第 i 包面中包含的武将卡的编号为 ai。
每当买完一包面,得到该面赠送的武将卡后,李华都会审视一遍自己手中的全部卡牌。
如果此时自己现有的卡牌能够凑齐全部武将卡,那么他就会立即将每种武将卡都拿出一张,并将拿出的卡牌寄给厂商,用来换奖。
请你分析李华购买干脆面的整个过程并计算购买完每一包面后,李华能否凑齐全部武将卡用来换奖。
注意,每次换奖都需要消耗卡牌,消耗掉的卡牌就不属于他了。
输入格式
第一行包含两个整数 n,m。
第二行包含 m 个整数 a1,a2,…,am。
输出格式
输出一个长度为 m 的 01 字符串,如果买完第 i 包面后,李华能够凑齐全部武将卡用来换奖,则第 i 位字符为 1,否则为 0。
数据范围
前 5 个测试点满足 1≤n,m≤20。
所有测试点满足 1≤n,m≤105,1≤ai≤n。
输入样例1:
3 11
2 3 1 2 2 2 3 2 2 3 1
输出样例1:
00100000001
输入样例2:
4 8
4 1 3 3 2 3 3 3
输出样例2:
00001000
这个题目就是一个模拟,但是关键在于要把循环想透,不然就会很容易出错。要想可以兑换奖品,就需要把n张武将卡全部集齐,也就是我们遍历的时候在n个数字都出现的位置就是可以兑换奖品的位置。 然后在一次兑换奖品后,所有对应的武将卡数量就要减1,若有武将卡数量变为零,就是不满足n个数字全部实现,在遍历过程中再寻找下一次满足的时间。
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 1e5+10;
int a[N];
int main(){
int n , m ;
cin >> n >> m;
int total = 0;
while (m -- ){
int x ;
scanf("%d", &x);
if(!a[x]) total ++;
a[x]++;
if(total == n){
printf("1");
for(int i = 1 ; i <= n;i++){
if(-- a[i] == 0){
total -- ;
}
}
}
else{
printf("0");
}
}
return 0;
}