题目
给你一个整数数组 nums
,其中可能包含重复元素,请你返回该数组所有可能的
子集(幂集)。
解集 不能 包含重复的子集。返回的解集中,子集可以按 任意顺序 排列。
思路
在递归时,若发现没有选择上一个数,且当前数字与上一个数相同,则可以跳过当前生成的子集。
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
class Solution {
public:
vector<int> t;
vector<vector<int>> ans;
void dfs(bool choosePre, int cur, vector<int>& nums) {
if (cur == nums.size()) {
ans.push_back(t);
return;
}
dfs(false, cur + 1, nums);
if (!choosePre && cur > 0 && nums[cur - 1] == nums[cur]) {
return;
}
t.push_back(nums[cur]);
dfs(true, cur + 1, nums);
t.pop_back();
}
vector<vector<int>> subsetsWithDup(vector<int>& nums) {
sort(nums.begin(), nums.end());
dfs(false, 0, nums);
return ans;
}
};
class Solution_wu {
public:
vector<vector<int>> subsets(vector<int>& nums) {
//结果集合
vector<vector<int>> sets;
//每次的子集
vector<int> subset;
// 执行回溯算法
backtrack(0, nums, subset, sets);
// 返回结果
return sets;
}
// i 表示递归时正在访问的数组元素下标
// nums 表示当前集合中的元素
// subset 表示每次递归后生成的子集,就是路径上的那些元素
// sets 表示最终生成的所有子集合
void backtrack(int i, vector<int>& nums, vector<int>& subset, vector<vector<int>>& sets) {
//1、每次确定好一个子集,都把它加入到结果集合中
sets.push_back(subset);
// 2、寻找结束条件,由于回溯算法是借助递归实现,所以也就是去寻找递归终止条件
// 本题中可以不加这个判断,大家可以思考一下为什么可以不加,结合 for 循环的边界来思考
if (i >= nums.size()) {
return;
}
for (int j = i; j < nums.size(); j++) {
// 4、判断是否需要剪枝,去判断此时存储的数据是否之前已经被存储过
if (j > i && nums[j] == nums[j - 1]) {
continue;
}
// 3、把本次递归访问的元素加入到 subset 数组中
subset.push_back(nums[j]);
// 5、做出选择,递归调用该函数,进入下一层继续搜索
// 递归
backtrack(j + 1, nums, subset, sets);
// 6、撤销选择,回到上一层的状态
// 取消对 nums[i] 的选择
subset.pop_back();
}
}
};
int main() {
Solution a;
vector<vector<int>> results;
int num;
vector<int> nums;
while (cin >> num) {
nums.push_back(num);
}
results = a.subsetsWithDup(nums);
cout << results.size() << endl;//测试
for (int i = 0; i < results.size(); i++) {
for (int j = 0; j < results[i].size(); j++) {
cout << results[i][j] << " ";
}
cout << endl;
}
}