自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(365)
  • 收藏
  • 关注

原创 某投资公司主数据管理破茧成蝶,构建统一数据基石

项目不仅有效解决了长期存在的数据管理顽疾,实现了数据的“统一源头、统一标准、统一管理、统一服务”,更显著提升了企业的数据质量、运营效率和协同能力,释放了数据资产的核心价值,为企业的数字化转型和智能化决策提供了强有力的支撑。面对上述挑战,该投资公司携手亿信华辰,明确了主数据管理项目的核心目标:通过建立统一的主数据管理平台和规范,打通各业务系统壁垒,构建协作高效的企业级数据体系,全面提升运营管理水平和决策支持能力。依据已制定的主数据标准(供应商、项目、课题、组织、人员等),亿信华辰成功搭建主数据管理平台。

2025-06-11 11:48:44 373

原创 打造银行数字化底座:数据治理+分析+报送的一体化实践

亿信华辰的数据治理解决方案,从银行实际需求出发,深度融合数据标准管理、元数据管理、数据质量管理、数据模型管理等核心功能,并涵盖数据资产管理和数据安全管理模块,满足行业标准的访问控制要求。方案结合银行具体情况,围绕分类分级、管理与应用等核心需求,搭建全域数据分类管理框架,实现数据资源的可视化与精细化管理,最终形成统一的数据资产目录。亿信华辰提供的“全栈式”数智服务,覆盖数据采集、加工、存储、治理、安全、分析到应用的全生命周期,旨在助力银行构建坚实的数字化底座,实现全方位数智化转型。亿信华辰金融行业解决方案。

2025-06-11 11:39:41 422

原创 解读《数字中国建设2025年行动方案》

2025年5月,国家数据局印发《数字中国建设2025年行动方案》(以下简称《行动方案》),为今年数字中国建设下达“任务书”、绘就“施工图”,明确了阶段性目标与实施路径。“东数西算”工程和算力互联网试验网的实施,将优化全国算力资源布局,降低企业用算成本30%以上,同时推动西部数据中心集群建设,形成“算力西移、数据东流”的协同发展格局。《行动方案》部署了体制机制创新、地方品牌铸造、“人工智能+”、基础设施提升、数据产业培育、数字人才培育、数字化发展环境优化、数字赋能提升等8个方面的重大行动。

2025-06-04 11:23:19 805

原创 解码高质量数据集炼金术,打造AI时代的超级燃料

数据集的质量影响人工智能的“智商”,近期发布的深度求索系列模型训练中,大量使用了高质量推理数据集,凸显了高质量数据的重要性,“大模型与垂直领域深度融合,同样也需高质量数据集的支撑。建设高质量数据集并非一蹴而就, 全国数据标准化技术委员会发布《高质量数据集建设指南(征求意见稿)》中提出, 高质量数据集建设应按照生命周期有序展开,包括数据需求、数据规划、数据采集、数据预处理、数据标注、模型验证等6个阶段。企业、科研机构和政府应重视数据治理,建立标准化流程,持续优化数据质量,以充分发挥数据的价值。

2025-06-04 11:05:27 465

原创 某标杆房企BI平台2.0升级实践

亿信华辰携手某头部地产集团,以“数据资产体系化、数据应用平民化、数据平台智能化”为建设目标,从工具、指标、数据、应用四大层面进行BI平台的优化升级,覆盖项目分别面向业务用户、开发人员的自助分析、分析报告、指标管理、报表开发4个业务场景。经营决策层面,BI预警引擎与集团经营例会机制深度融合,每月自动生成带风险标记的董事会报告,重点标注现金流承压、存货周转异常等项目,使管理层决策响应速度提升50%,数据驱动的战略调整占比从35%攀升至82%。用户可按业务主题、管理维度等多角度穿透查询,告别“指标迷宫”。

2025-05-28 11:39:03 729

原创 看这家央企如何用轻量化数据中台激活30+铁路业务场景

基于亿ABI和睿治数据治理平台实现30余张展示报表页面及相对应的数据标准、数据建模、数据汇集、数据加工、任务调度、质量检测、数据资产、数据服务、数据安全、报表制作、报表生成、报表展现、数据备份及恢复、统一门户等功能。根据档案、合同、劳务、物资、协同办公五大主题域,建立了档案管理、法律纠纷、合同管理、劳务管理、物资管理、公文管理、流程管理、资产管理等8个质检模型,质检规则共计2千余条,自动生成质检报告,以便对数据质量进行考核。通过数据治理,确保数据的准确性、一致性和完整性,避免因数据错误而导致的潜在风险。

2025-05-21 13:56:49 818

原创 破局电力数字化转型:从数据孤岛到智能云脑的全方案解析

从技术、经济、行为、满意度等维度展开,分析包括用电量、负荷曲线、功率因数、电费支出、投诉率、满意度评分、需求响应参与率、电能替代率在内的各项指标,通过数据挖掘、用户画像、负荷预测、精准营销等手段,进行用户用电行为分析、需求响应优化、服务质量提升等,优化电力资源配置,提升用户满意度,支持电力市场化改革和“双碳”目标的实现。电力业务流程复杂,覆盖发电、输电、配电、交易等环节,其在数据规模、实时性、复杂性、安全性和行业特性等方面与其他行业存在显著差异。目前,绝大多数电力企业都处于“数据资源化”的初步阶段。

2025-05-21 11:54:02 824

原创 跨国能源企业如何玩转数据治理?联邦式主数据管理实战深度拆解

某跨国新能源龙头企业面对多国业务扩张带来的数据标准混乱、质量低下、系统孤岛等挑战,以集团数字化战略为驱动,创新推出联邦式跨境主数据管理体系。通过“统一标准、分层治理”模式,公司成功整合六大核心数据主题域,构建中英双语标准化体系与智能清洗机制,实现全球客商唯一性校验、跨国财务科目映射及高效数据资产沉淀。某跨国新能源龙头企业(以下简称“S公司”)是全球光伏、风电、储能等领域的领军企业,业务覆盖新能源开发全生命周期,包括研发、投资、设计、建设和运营。

2025-05-14 11:37:30 554

原创 主数据:为何成为制造业数字化转型的“秘密武器”

在制造业迈向数字化转型的新时代,数据已跃升为企业创新的“新石油”,是推动竞争力攀升的关键资源。主数据,它横跨企业各个业务部门与系统,是确保数据一致性、精确性和时效性的坚固基石。接下来,让我们深入探讨制造业主数据管理的核心要素、重要性及实施主数据管理系统的必要性,并通过三个案例,揭示主数据在制造业数字化转型中的非凡价值。

2025-05-14 10:54:24 796

原创 数说:中国最卑微的职业被智障AI挤下岗

BOSS直聘数据显示,这个被称为“企业门面”的岗位,在一线城市的薪资尊严线早已失守——北上深新人尚能勉强触及5000元门槛,而有着“客服之都”称号的成都,应届生起薪竟低至2600元,不足当地应届工程师起薪的1/3。艾媒咨询数据显示,智能客服与人工客服搭配仍是绝大多数(77.99%)的用户所满意的客服模式,19.44%的用户满意的客服模式为单人工客服。技术本应让服务更温暖,而非制造更多隔阂。在这场人机对话的荒诞剧中,我们需要的不仅是更聪明的算法,更是对服务本质的回归——毕竟,解决问题的永远是人,而不是机器。

2025-05-07 10:44:05 1380

原创 数据应用新维度:AI 赋能企业挖掘非结构化数据价值

亿信华辰“AI+睿治”数据治理平台,是行业首个"大模型+知识图谱"双引擎的智能数据管理平台,其核心技术是依托成熟的睿治数据治理平台,秉承 “Data+AI”的设计理念,融合大模型AI能力以及自研的AI智能体,重新定义智能治理新范式——让AI驱动数据治理,让企业数据治理实现真正的“自动驾驶”。非结构化数据要比结构化数据多得多。传统的数据治理主要是围绕结构化数据开展的,目前已经有40年的发展历史,随着人工智能技术的发展,非结构化数据的治理需求逐渐释放出来,非结构化数据的挖掘和应用进入到企业关注的视野中。

2025-05-07 09:55:41 847

原创 大模型驱动金融数据应用的实战探索

作为深耕金融科技18年的服务商,亿信华辰基于在银行、金融租赁、保险等领域的数百个标杆项目实践——涵盖监管报送、数据治理、领导驾驶舱、数据仓库等核心场景,构建起三条深度融合大模型技术的产品线,为金融机构打造新一代智能数据中枢。亿信华辰创新推出行业首个"大模型+知识图谱"双引擎驱动的"AI+睿治"智能数据治理平台,通过自然语言处理(NLP)、特征识别、机器学习等技术的深度融合,为企业打造从数据标准管理到资产化的全流程智能治理解决方案,开启数据治理的"自动驾驶"时代。大模型正在重新定义金融数据应用的边界。

2025-04-23 11:15:04 960

原创 睿码主数据平台新版发布:三权分立+国际化+信创全兼容

亿信华辰睿码主数据管理平台集成主数据模型、主数据维护、主数据分发、数据集成、主数据治理等模块,为用户提供一站式主数据治理解决方案。在主数据管理流程中,存在部分信息属于较为敏感的类型,如常见的身份证号等,只能对拥有相应数据安全权限的人员开放,那么就需要在主数据管理平台中对进行脱敏处理,保障数据查看、接口数据分发的数据安全。在主数据管理过程中,主数据模型字段需要遵循业务标准,这样可以确保数据在不同系统和流程的一致性,还能实现数据的全程可追溯性,为此产品支持在建立模型字段时根据数据标准建立。

2025-04-23 10:46:41 750

原创 如何让AI秒懂你的业务,无需复杂的模型训练,只需……

智问的「背景知识」配置功能,通过简单易用的方式,让企业能够将内部的专业知识和业务规则快速赋予AI系统,解决了通用AI在企业特定场景下"听不懂、说不准"的问题。这一功能让数据分析更贴合企业实际,使业务人员能直接参与系统优化,帮助企业在不增加技术投入的情况下,获得更精准的数据洞察。依赖专业的数据团队编写复杂的规则;这些企业内部约定俗成的术语和业务规则,往往成为数据应用的"最后一公里"障碍。3."累计发生期间费用"等于"利润表"中“项目”为“销售费用”、"管理费用"和"财务费用"的“本期金额”之和。

2025-04-16 09:49:22 604

原创 白酒制造主数据管理全链路解析:业务重塑与AI赋能

2.保障体系在保障体系方面,根据白酒行业组织架构特性与经营管理模式,主数据管理组织在主数据管理委员会的指导下,采用两种架构支撑主数据管理活动。企业还需要建立一套完善的管理制度和管理流程,管理制度应包含管理规范、管理办法和管理细则等内容,明确各部门的职责和分工。管理流程则包括主数据的生命周期管理、标准管理和质量管理等方面。同时,企业还需要建立标准体系,明确分类标准、编码标准和属性标准等内容,确保主数据的准确性和一致性。3.平台选型。

2025-04-16 09:34:51 1006

原创 制造企业数据治理体系搭建与业务赋能实践

亿信华辰以“睿治数据治理平台”与“ABI智能分析平台”为核心抓手,为企业构建覆盖数据全生命周期的管控闭环,在元数据管理(如全域血缘追溯)、资产盘活(如数据资产门户建设)及智能应用(如大模型驱动的零代码分析)中发挥关键作用,并通过深度适配国产化软硬件生态,为企业提供安全可控的数字化转型支撑。通过全生命周期治理体系的构建,企业不仅实现了研发、生产、营销多域数据的深度协同,更在个性化定制、供应链优化等场景中释放出数据资产的倍增效应。例如,汽车零部件企业需通过实时数据打通设计、生产、物流环节,实现订单快速响应。

2025-04-09 10:56:04 2484

原创 大模型重构数据治理新范式:亿信华辰“AI+睿治“的六大智能化突破

对于脚本代码解析的难点,通过AI大模型的代码解读能力,可以提升复杂代码、异构数据库和多类型的加工脚本场景下,血缘解析的成功率和准确率,并利用AI大模型总结并生成表级和字段级的业务口径或者数据处理逻辑,能极大地提升用户数据血缘和数据影响分析的效率。与传统的方式相比,亿信华辰睿治基于大模型AI的“智查”,能提供更高精度识别、自动化处理、实时更新和智能推荐等多项能力增强,能够显著提高诸如物料等主数据管理的准确性和效率,减少人为错误,优化管理,大幅提升企业的运营效率和管理水平。

2025-04-09 10:45:29 854

原创 破局离散制造:主数据管理驱动数字化转型的实践与启示

在此背景下,企业需通过主数据平台重构,打通跨系统、跨组织的数据壁垒,支撑智能化决策与业务创新。部署主数据平台,支持建模(灵活配置数据分类与属性)、清洗(基于规则引擎去重补全)、分发(通过ESB或API对接ERP、MES等系统)及全生命周期管理(新增、变更、归档)。分阶段推进试点与推广,优先解决高优先级数据(如客商、物料),通过数据盘点、清洗、映射实现历史数据迁移,并建立持续优化机制。需建立“黄金数据”的集中管控机制,确保数据可用、可靠、实时可查,并通过流程优化减少人工干预,提升数据流转效率。

2025-03-26 10:11:18 699

原创 主数据管理解决方案:破解数据混乱,打造企业核心数据底座

某500强制造企业曾因物料编码混乱,导致价值3.2亿元的配件采购错误;某三甲医院因患者信息分散在12个系统,每年引发超千例医疗纠纷。据IDC调研,85%的企业因主数据问题导致年损失超千万级。主数据管理(MDM)的缺失,正让企业陷入三大困局:数据孤岛:CRM/ERP/PLM等系统数据差异率超35%效率黑洞:30%员工工时浪费在数据人工核对创新瓶颈:数据质量差导致AI模型准确率不足60%

2025-03-25 11:11:01 708

原创 主数据管理的主要作用是什么?企业数字化转型必备指南

在数字化转型浪潮中,60%的企业因数据不一致导致决策失误(Gartner 2023)。当财务系统中的「客户编号」与CRM系统存在30%的差异、供应链与生产系统的「物料编码」无法匹配时,企业每年可能损失超千万级营收。主数据管理(MDM)正是根治这一痛点的核心方案——它如同企业数据世界的DNA校准器,让分散在20+系统中的核心数据焕发聚合价值。

2025-03-24 18:00:23 678

原创 AI+智检:智能化质检赋能企业数据资产高质量应用

面对"数据质量-业务成效"的正向循环构建,当下正是企业突破传统治理瓶颈、重塑数据价值链条的战略窗口。通过大模型与数据治理的深度融合,企业可打破数据孤岛、激活“沉睡”资源,解决了传统数据治理的难题。某保险公司曾深陷典型数据质检困局,其车险理赔系统每月产生500万条数据,但人工维护的68条质检规则仅能覆盖23%的数据质量问题,导致每年因数据错误产生超数千万元超额赔付。自动识别多种字段类型(身份证号、银行卡号、设备编码等),结合数据分布特征(空值率、离散度、数值区间等),通过大模型生成字段专属质检规则。

2025-03-19 11:22:12 845

原创 归因分析太难?智问BI@GPT自动生成决策建议

BI@GPT的归因分析功能不仅提升了其在数据分析方面的智能化水平,更使得企业能够更加精确地了解数据背后的驱动因素,帮助企业在复杂的商业环境中找到最佳的决策路径。归因分析,简单来说,就是一种用来分析数据变化原因的方法。精准洞察,快速定位问题:通过多维度、穿透式的分析,归因分析能够精确揭示数据变化背后的根本原因,帮助企业快速发现问题,避免盲目决策,提升决策效率。科学决策,降低风险:基于量化分析和数据驱动的洞察,归因分析显著提高了决策的科学性与准确性,有效降低决策风险,增强决策的可靠性与可执行性。

2025-03-13 10:33:12 862

原创 某金融租赁公司数据治理实践

为此,需采取一系列措施,包括但不限于构建统一的数据平台,构建数据治理体系,施行有效数据质量控制策略,建立完善的数据安全防护体系,以及培养数据驱动的文化与人才,从而达到有效地整合内外部数据资源,提高数据的可用性与价值密度,赋能前线业务,优化决策流程,提升客户体验的目标。W公司数据治理项目建设以来,已发现数据问题约500个,涉及业务、财务、数据平台约107张数据库表,通过系统发现了很多数据的标准应落未落,以及数据不一致等,且数据问题发现、整改的整个生命周期大大缩短,整体数据整改效率提升30%以上。

2025-03-04 17:34:35 1051 1

原创 深度集成DeepSeek,智问BI@GPT引领商业智能“深度思考“革命

例如当销售数据下滑时,传统报表只能呈现曲线图,而深度思考模式会分析意图,根据意图动态调整取数策略、解析意图背后的维度和指标、提供最适合的可视化方式。某商业银行应用深度思考功能后,系统通过分析客户交易行为、社交网络特征、行业景气指数等多个维度,不仅能识别潜在风险客户,还能预测不同经济周期下的违约概率变化,帮助银行动态调整信贷政策。在零售领域,通过分析销售数据,零售企业可以发现哪些产品最受欢迎、哪些地区的销售额最高、哪些时间段的销售额最高,从而优化产品组合,制定更精准的营销策略,抢占市场先机。

2025-03-04 16:36:05 1110

原创 可信数据空间到底是什么,与数据资产管理有什么关系

可信数据空间与数据基础设施存在相关性又有不同,具体体现为:数据基础设施涵盖网络基础设施、算力基础设施、数据流通利用基础设施与安全保障基础设施,可信数据空间中的技术系统是数据流通利用基础设施的一种,但除此之外,可信数据空间还包括规则机制、生态主体和场景应用等其他组成部分。作为数据流通利用的核心枢纽,可信数据空间肩负着构建安全、高效、可信的数据共享生态的重要使命,其核心目标在于打破数据流通的重重壁垒,全面激活数据要素潜能,实现数据要素价值,进而为构建全国一体化数据市场筑牢根基。

2025-02-27 10:51:25 1592

原创 指标管理项目建设的高频问题和解决思路

这是一个需要大家深思的问题,如何确保业务人员在参与指标项目的同时,也能看到并汇报自己的成果,从而保持其持续的热情与支持。在指标项目中,指标体系的取舍是一个敏感而困难的问题。此外,若资产的合计值不等于其各组成部分(如现金、存货、应收账款、固定资产等)的总和,则会引起后续使用者的质疑,对数据的准确性产生怀疑,这也是一个极为严重的问题。在这些场合中,尽可能推动客户方构建成熟完备的项目成员架构,适时抛出遗留问题与影响,需要明确客户方的责任人,确保有一个统一的协调职能,避免出现客户方人员责任确认不明确的问题。

2025-02-19 16:18:33 873

原创 政策解读:制造企业如何实施数字化转型

通过建设一站式数据应用平台,某轻工制造企业实现对企业收入、利润、应收账款余额等关键指标的采集和分析,将基层员工从繁琐的数据统计工作中解脱出来,参与到数据分析和管控工作中,中层管理者凭借智能化、精细化的管控工具,辅助高层领导及时有效地进行风险管控和最终决策,实现内部财务运营的智能化。而今,通过构建科学管理体系,明确责任分工,并推出资产门户,实现了数据需求审批的线上化闭环,极大降低了沟通成本,提升了协作效率,同时支持数据的在线查阅、下载与自助分析,显著减轻了管理员负担。同时数据标准的缺失,读懂数据难;

2025-02-19 15:56:28 1117

原创 数据治理:某环境公司主数据管理项目经验分享

因此,项目主数据的管理显得较为零散。主数据项目通过整合和优化企业内部的各类主数据,如产品、项目、物料、客户、供应商等,实现了数据的统一管理和高效利用,有助于打通企业内部的各个业务流程,提升业务之间的协作效率。主数据管理的组织架构已明确划分,依据不同的组织和业务领域,我们为各类主数据指定了相应的责任部门,并详细规划了业务部门如何申请、使用及运维主数据的流程。此外,主数据管理平台本身具备数据分发的接口,可以方便地将数据分发给多个业务系统,包括新建的业务系统和历史业务系统,从而进一步降低了数据集成的成本。

2025-02-12 17:44:37 697 1

原创 数据管理的四大基石:通俗解读数据中台、数据仓库、数据治理和主数据

原来各个数据孤岛中的数据,可能会在物理位置(比如沃尔玛在各个城市可能都有自己的数据中心)、存储格式(比如月份是数值类型,但但天气可能是字符类型)、商业平台(不同数据库可能用的是Oracle数据库,有的是微软SQL Server数据库)、编写的语言(Java或者Scale等)等等各个方面完全不同,数据仓库要做的工作就是将他们按照所需要的格式提取出来,再进行必要的转换(统一数据格式)、清洗(去掉无效或者不需要的数据)等,最后装载进数据仓库。同样,在数据世界里,主数据就像是数据的“身份证”。

2025-02-12 17:18:58 1405

原创 官方定义的61个数据领域名词,你了解几个

我国重点围绕未来制造、未来信息、未来材料、未来能源、未来空间和未来健康等方向,大力发展人工智能、类脑智能、量子科技、原子级制造、生物制造、人形机器人、低空经济、氢能等未来产业,这是牢牢把握未来发展主动权的战略选择。安全是覆盖点、线、面、场的动态全流程保护措施。数据使用控制是指在数据的传输、存储、使用和销毁环节采用技术手段进行控制,如通过智能合约技术,将数据权益主体的数据使用控制意愿转化为可机读处理的智能合约条款,解决数据可控的前置性问题,实现对数据资产使用的时间、地点、主体、行为和客体等因素的控制。

2025-01-09 16:52:19 938

原创 国家数据局:数据治理推动企业数据资源开发利用

融合数据集成、数据交换、数据模型、元数据管理、数据标准管理、数据质量管理、数据资产管理、数据安全管理、数据生命周期管理九大模块,各模块可独立或任意组合使用,能迅速响应并满足跨行业、多元化、复杂多变的数据治理场景。很多企业的数据质量意识淡薄,数据管理职能缺失,无制度可依,数据操作不规范,数据质量问题严重;《意见》此处强调的数据治理技术与工具的建设内容,企业应积极开发和使用大数据分析、治理等智能化工具,建立覆盖研发、生产、销售、服务、管理等各环节的数据资源体系,以提升提高数据治理的效率和准确性。

2025-01-03 16:58:47 697

原创 连续三年!亿信华辰荣耀入选信通院《数据治理产业图谱3.0》

数据治理产业图谱3.0》旨在梳理数据治理相关产品及服务的市场现状,洞察数据产业发展现状及未来发展趋势,为各方在数据治理领域的布局规划和未来发展提供参考。在本次《数据治理产业图谱3.0》中,亿信华辰被归类为一体化平台(Unification)服务商,这意味着亿信华辰提供的数据治理产品能够覆盖数据全生命周期,未来,亿信华辰将持续创新,充分利用在数据治理领域经验累积,为更多企业数智化转型提供技术平台支持,为构建更加智能、高效的数据治理生态贡献自己的力量!,助力各行各业实现数据资产的高效管理和价值挖掘。

2024-12-25 10:40:58 381

原创 AI引领BI创新!亿信华辰BI@GPT应用入选权威案例

基于数可信、用好数的理念,某工业集团利用亿信华辰 BI 数字助理工具的私有化部署,将 LLM 大语言模型和 BI 基座能力相结合,通过向量数据库、RAG、text2DSL、数字人等技术共同协作,应用大语言模型的底层能力,学习企业业务知识(表知识、业务逻辑、问答知识、洞察知识等),建设以智能指标为中心,融合 LLM Agent 能力的数据驱动智能决策平台(见图),知识库实现业务洞察与自动化优化的无缝对接。通过智能化的知识管理与分享,集团得以构建更加坚实的知识基础,为长期发展注入源源不断的动力。

2024-12-17 11:17:19 881

原创 实操!成功的指标管理项目应该怎么做

它记录了经过讨论落地形成的指标框架体系,就像一本真正的字典一样,业务人员可以通过所需的场景要素,在标准档案中快速检索到他们需要的指标。本文将深入探讨企业建立指标管理项目的必要性,提供一套实用的指标管理工作指南,介绍常用的指标管理工具,并通过生动案例,带您了解指标管理项目的真实效果。指标系统它不是业务系统,其实是作为数据分析平台,依赖上游系统数据,将数据抽取进行计算、进行整合,按照指标体系去进行计算、加工,并且存储指标计算结果,最终服务于终端使用用户。指标建设项目的核心问题,在于对指标的定义。

2024-12-04 10:39:29 829

原创 以数据采集分析为核心支撑,解读产业大脑平台10大应用场景

某地产业大脑平台建立了工业增加值增速专题可视化应用,通过系统对数据的智能处理和分析,计算工业增加值及其增长速度,为某个地区一定时期工业经济总量及其增减变动情况提供依据,从而判断短期工业经济的运行走势和经济的景气程度,为制定和调整经济政策、实施宏观调控的重要参考和依据。工业企业投资和项目建设数据复杂,难以快速汇总和分析。产业大脑平台通过实时收集、处理和分析企业侧的生产、经营、供销、信用、管理等数据,能够为政府提供及时、准确的产业信息,从而增强政府对工业经济运行的调控能力,提高政策制定的前瞻性和针对性。

2024-11-27 11:02:12 980

原创 如何做好企业主数据识别工作

平台提供全生命周期的管控,从主数据模型的构建、编码规则的定义、质量标准的设定,到模型流程的管理和工作流的集成,均具备完善的功能。例如,对于财务主题,我们需要了解哪些业务系统需要财务主题的数据,如会计科目等,并确定这些数据是从哪些上游系统(如金蝶、用友的财务系统)获取的,以及哪些下游系统(如订单系统)需要使用这些数据。随后,针对每个选定的主数据主题,列出其对应的上游系统。关于主数据识别的方法,主要就是4步:首先是列出所有的业务,第二标出关注的主数据主题,第三是标出对应的上下游的业务,最后是明确他的依赖关系。

2024-11-27 10:41:54 735

原创 某集团数据治理组织及体系建设参考

为实现数据战略确定的目标和愿景,确保数据资产价值最大化,需在数据全生命周期的各个阶段实施有效管理,从宏观规划、概念设计到物理实现,从数据获取、处理到应用、运维、退役的全过程,均需满足数据管理需求。集团实施数据标准管理,涵盖业务术语、参考数据和主数据、数据元、指标数据等多个方面,确保数据资源从产生到传输、引用的全过程遵循统一标准,提升数据管理的规范性、有效性和共享性。数据标准管理的对象包括元数据标准、主数据标准、指标数据标准、数据质量标准、数据模型标准、数据接口标准、数据安全标准等。

2024-11-20 13:43:29 1156

原创 从传统分析到智能问数,打造零门槛数据分析方案

亿信华辰打造的数字助理BI@GPT 将LLM大语言模型和BI基座能力相结合,利用向量数据库、RAG、text2DSL、数字人等技术共同协作,应用大语言模型的底层能力,学习企业业务知识(表知识、业务逻辑、问答知识、洞察知识等),可构建强大且智能的自然语言数据统计和分析系统。无论是模型、语音还是数字人,我们都能根据您的业务需求进行灵活集成与适配,共同探索数据智能的无限可能。用户无需再费心查找数据所在的系统或表格,可以通过对话提问,快速了解数据的情况,基于AI的推荐和自动增强分析,抽丝剥茧,对数据做进一步分析。

2024-11-20 11:27:42 971 1

原创 智慧电厂新纪元:基于亿信ABI的电厂环保指挥管控平台实践

本案例聚焦于某电厂的智能化转型实践,通过引入先进的烟气达标监测技术与碳资产管理平台,不仅实现了对电厂排放的精准控制,还极大提升了碳数据的处理效率与准确性,为电厂乃至省级层面的碳资产调度与环保管理开辟了新路径。本项目分两部分,以“数据采集、存储”为手段,以“数据资源整合”为核心,在电厂端建设电厂环保指挥管控平台,在上级省公司建设智慧环保指挥中心,旨在提升电厂环保设施智能化运行水平,提升电厂环保设施评价、监督、诊断水平,实现对电厂环保设施系统化、智慧化和精细化管控,提升和强化碳排放数据管理水平。

2024-11-13 15:31:05 1154

原创 主数据与数据标准的关系,这是我见过最形象的解释

基于这些经营数据和主数据,我们可以进一步生成企业内部所需的分析数据,这些数据主要是通过生产经营的加工汇总得出的,包括业绩统计、关键KPI指标、财务报表以及决策支持数据等,它们共同构成了企业内部的关键数据体系。对于主数据而言,也有主数据的数据标准,数据标准不仅确保了数据在采集、存储、处理和传递过程中的高质量,还为主数据的源头管理提供了规范和指导。本文将带您揭开主数据的面纱,探讨其在企业数据中的地位,辨析主数据与参考数据、数据标准的微妙差异,并阐述数据标准、数据质量与主数据的相互关联。

2024-11-13 15:23:06 902

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除