- 博客(3)
- 资源 (1)
- 收藏
- 关注
原创 吴恩达Deeplearning.ai专项课程笔记(三)-- 深层神经网络
1.符号约束网络层数 :记为L,等于隐藏层加输出层数的和。节点数 :采用n[l]n^{[l]}n[l]表示第l层的节点/单元数。激活函数 :采用a[l]=g[l](z[l])a^{[l]}=g^{[l]}(z^{[l]})a[l]=g[l](z[l])表示第l层的激活函数值。参数表示 :采用W[l]W^{[l]}W[l]表示第l层参数,及求Z[l]Z^{[l]}Z[l]时的权重矩阵,采...
2018-09-29 16:12:44 216
原创 吴恩达Deeplearning.ai专项课程笔记(二)-- 浅层神经网络
吴恩达Deeplearning.ai专项课程笔记(二)-- 浅层神经网络1.神经网络表示输入层 :通过输入层输入数据。隐藏层 :通过隐藏的中间层对输入数据进行训练,训练过程中中间节点的真正数值无法通过训练集看到。输出层 :输出模型的预测值。2.符号约束网络层数 :等于隐藏层加输出层数的和,如上图为一个双层神经网络。(注意:不算入输入层)不同层数据 :采用a[i]a^{[i...
2018-09-27 13:40:28 586
原创 吴恩达Deeplearning.ai专项课程笔记(一)-- 神经网络基础
吴恩达深度学习专项课程Deeplearning.ai共开设五门课,目前已经学了大半,想起来忘了整理课程笔记,这几天抽空补上。1.基础概念神经网络 :输入一些数据,经过隐藏层,最终得到输出,圆形节点为神经元。 神经网络样例 :(标准神经网络/卷积神经网络/循环神经网络) 结构化数据与非结构化数据 :结构化数据通常指数据库数据(每个特征都有清晰定义),非结构化数据如音频、原始音频、图
2017-11-02 18:42:42 1949 2
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人