Federated Learning
文章平均质量分 95
Eternity_GQM
ICPC铁牌选手,努力向上的研0软工蒟蒻,欢迎私信评论交流!!!
展开
-
常见用于联邦学习的数据集【FL】【Datasets】
每个文件存储了一部分训练数据,共5个批次(batches),每个批次包含了 10,000 张 32x32 像素的彩色图像。这是一个与MNIST类似的图像数据集,但包含了各种时尚产品的图像,用于服装分类任务。:文件还包含了每个类别的索引,这些索引与训练数据和测试数据中的标签值相对应。:文件中包含了数据集中所有类别的名称。这些名称对应于图像数据中的标签,帮助将模型预测的数字标签与实际类别名称进行匹配。:CIFAR-10包含60,000张32x32像素的彩色图像,分为10个类别,每个类别有6,000张图像。原创 2024-08-04 16:39:39 · 961 阅读 · 0 评论 -
什么是独立同分布,那非独立同分布呢?【FL】
如果这些价格变化遵循相同的分布(例如,正态分布),但每一天的变化受前一天的影响(存在依赖性),那么这些价格变化就是非独立但同分布的。:提高每个客户端的本地训练的时间,允许模型在本地进行更多的迭代,这样可以使得本地模型更好地适应本地数据,从而减少数据不均衡带来的影响。在联邦学习中,每个客户端的数据通常来自于不同的分布,因此这些数据可能是非独立和非同分布的。指的是在参与训练的多个客户端上,数据样本并不符合独立同分布的假设。如果一组随机变量既是相互独立的,又遵循相同的分布,则称它们是独立同分布的。原创 2024-08-04 15:41:38 · 915 阅读 · 0 评论 -
联邦学习研究综述【联邦学习】
联邦学习综述原创 2024-08-04 15:05:43 · 1772 阅读 · 0 评论