- 博客(1)
- 收藏
- 关注
原创 不同数据处理方式对机器学习模型误差的作用——以LASSO、XGBoost为例
LASSO是非常经典的机器学习回归模型,XGBoost是具有代表性的集成学习方法。本文以LASSO、XGBoost为例,数据集为沪深300指数的收盘价与7项技术指标(包括MA5,MA20,MA60,MACD,MOM,OBV,RSI,ROC,已通过TA-Lib库完成)观察输入原始数据、差分数据、min-max标准化后的数据、Z-Score标准化后的数据(已通过Excel完成)对于模型误差的影响。
2022-06-02 16:17:07 775 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人