自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1)
  • 收藏
  • 关注

原创 不同数据处理方式对机器学习模型误差的作用——以LASSO、XGBoost为例

LASSO是非常经典的机器学习回归模型,XGBoost是具有代表性的集成学习方法。本文以LASSO、XGBoost为例,数据集为沪深300指数的收盘价与7项技术指标(包括MA5,MA20,MA60,MACD,MOM,OBV,RSI,ROC,已通过TA-Lib库完成)观察输入原始数据、差分数据、min-max标准化后的数据、Z-Score标准化后的数据(已通过Excel完成)对于模型误差的影响。

2022-06-02 16:17:07 775 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除