Q:
考虑方程式:a^3 + b^3 = c^3 + d^3
其中:“^”表示乘方。a、b、c、d是互不相同的小于30的正整数。
这个方程有很多解。比如:
a = 1,b=12,c=9,d=10 就是一个解。因为:1的立方加12的立方等于1729,而9的立方加10的立方也等于1729。
当然,a=12,b=1,c=9,d=10 显然也是解。
如果不计abcd交换次序的情况,这算同一个解。
你的任务是:找到所有小于30的不同的正整数解。把a b c d按从小到大排列,用逗号分隔,每个解占用1行。比如,刚才的解输出为:
1,9,10,12
不同解间的顺序可以不考虑。
A:
>>dfs
>>传递参数为arr[29]和k。k代表当前执行的是arr[k],将它与arr[k...29]进行交换,每交换一次就递归到下一步判断,再回溯。
>>就是模拟C(29,4)的过程,这一类选择的问题都用了这种办法,即交换后回溯
#include "stdio.h"
#include "windows.h"
#define M 29
int flag[M]={0};//判断是否重复,但是不通用,是逆推过来的
void fun(int *arr, int k);
void check(int *a,int *b,int *c,int *d);
int main (void)
{
int arr[M]= {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29};
fun(arr,0);
system("pause");
return (0);
}
void fun(int *arr, int k)
{
int j, tmp, a, b, c, d;
if(k==4)
{
a=arr[0];
b=arr[1];
c=arr[2];
d=arr[3];
if(a*a*a+b*b*b==c*c*c+d*d*d && a<=b)
{
check(&a,&b,&c,&d);
if(!flag[d]){
printf("%d,%d,%d,%d\n",a,b,c,d);
flag[d]=1;
}
}
}
else
{
for(j=k; j<M; j++)
{
tmp = arr[j]; arr[j] = arr[k]; arr[k] = tmp;
fun(arr,k+1);
tmp = arr[j]; arr[j] = arr[k]; arr[k] = tmp;
}
}
}
void check(int *a,int *b,int *c,int *d)
{
int i,j,tmp,num[4]={*a,*b,*c,*d};
for(i=0; i<3; i++)
for(j=0; j<3-i; j++)
if(num[j]>num[j+1])
{
tmp=num[j]; num[j]=num[j+1]; num[j+1]=tmp;
}
*a=num[0];
*b=num[1];
*c=num[2];
*d=num[3];
}