立方和等式

Q:



考虑方程式:a^3 + b^3 = c^3 + d^3
其中:“^”表示乘方。a、b、c、d是互不相同的小于30的正整数。
这个方程有很多解。比如:
a = 1,b=12,c=9,d=10 就是一个解。因为:1的立方加12的立方等于1729,而9的立方加10的立方也等于1729。
当然,a=12,b=1,c=9,d=10 显然也是解。
如果不计abcd交换次序的情况,这算同一个解。
你的任务是:找到所有小于30的不同的正整数解。把a b c d按从小到大排列,用逗号分隔,每个解占用1行。比如,刚才的解输出为:
1,9,10,12


不同解间的顺序可以不考虑。


A:

>>dfs

>>传递参数为arr[29]和k。k代表当前执行的是arr[k],将它与arr[k...29]进行交换,每交换一次就递归到下一步判断,再回溯。

>>就是模拟C(29,4)的过程,这一类选择的问题都用了这种办法,即交换后回溯


#include "stdio.h"
#include "windows.h"
#define M 29
int flag[M]={0};//判断是否重复,但是不通用,是逆推过来的
void fun(int *arr, int k);
void check(int *a,int *b,int *c,int *d);

int main (void)
{
	int arr[M]= {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29};
	fun(arr,0);
	system("pause");
	return (0);
}

void fun(int *arr, int k)
{
	int j, tmp, a, b, c, d;
	if(k==4)
	{
		a=arr[0];
		b=arr[1];
		c=arr[2];
		d=arr[3];
		if(a*a*a+b*b*b==c*c*c+d*d*d && a<=b)
		{
			check(&a,&b,&c,&d);
			if(!flag[d]){
				printf("%d,%d,%d,%d\n",a,b,c,d);	
				flag[d]=1;
			}
		}
	}
	else
	{
		for(j=k; j<M; j++)
		{
			tmp = arr[j]; arr[j] = arr[k]; arr[k] = tmp;
			fun(arr,k+1);
			tmp = arr[j]; arr[j] = arr[k]; arr[k] = tmp;
		}
	}
}

void check(int *a,int *b,int *c,int *d)
{
	int i,j,tmp,num[4]={*a,*b,*c,*d};
	for(i=0; i<3; i++)
		for(j=0; j<3-i; j++)
			if(num[j]>num[j+1])
			{
				tmp=num[j]; num[j]=num[j+1]; num[j+1]=tmp;
			}
	*a=num[0];
	*b=num[1];
	*c=num[2];
	*d=num[3];
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值