【BZOJ2729】排队(组合数学 + 高精度)

传送门

    HNOI2012 排队
    题意:某中学有 n 名男同学,m 名女同学和两名老师要排队参加体检。他们排成一条直线,并且任意两名女同学不能相邻,两名老师也不能相邻,那么一共有多少种排法呢?(任意两人不同)

I think

    排列组合+高精度
    考虑先放男生,后放老师,再放女生

    先用男生把两个老师隔开,再用男生和老师把所有女生隔开
    方案数为: A(n,n)*A(n+1,2)*A(n+3,m)

    或者用女生隔开老师
    方案数为:A(n,n)*A(m,1)*A(2,2)*A(n+1,1)*A(n+3,m-1)(此时两个老师视为整体)

    注意排列公式: A(m,n) = m!/(m-n)!

Code

#include<cstdio>
#include<cstring>
using namespace std;

typedef long long LL;

const int sm = 2e3 + 10,Mod = 1e8;

int n,m;

int Max(int x,int y) { return x>y?x:y; }

struct Bign {
    int len;
    LL val[sm];

    Bign() { len = 1; memset(val,0,sizeof(val)); val[0] = 1; }

    void init() { val[0] = 1;}

    Bign operator * (const int x) {
        Bign ret; LL t = 0;
        ret.val[0] = 0, ret.len = len + 1; 
        for(int i = 0; i < ret.len; ++i) {
            ret.val[i] = (val[i] * x + t) % Mod;
            t = (val[i] * x + t) / Mod;
        }
        while(ret.val[ret.len-1] == 0 && ret.len > 1) --ret.len;
        return ret;
    }

    Bign operator + (const Bign & x) {
        Bign ret;  ret.len = Max(len,x.len) + 1;
        LL t = 0; ret.val[0] = 0;
        for(int i = 0; i < ret.len; ++i) {
            ret.val[i] = (val[i] + x.val[i] + t) % Mod;
            t = (val[i] + x.val[i] + t) / Mod;
        }
        while(ret.val[ret.len-1]==0 && ret.len>1) 
            --ret.len;
        return ret;
    }

    void print() {
        printf("%lld",val[len-1]);
        for(int i = len-2; i >= 0; --i)
            printf("%08lld",val[i]);
        putchar(10);
    }

}a,b;

int main() {
    bool flaga = 0, flagb = 0;
    scanf("%d%d",&n,&m);
    if(n+3<m||n+m+1<2) return puts("0"),0;
    else {
        if(2<=n+1 && m<=n+3) {
            flaga = 1;
            for(int i = 1; i <= n+3; ++i) {
                if(i <= n) a = a * i;
                if(i > n-m+3) a = a * i;
            }
            a = a * (n*(n+1));
        }
        if(m!=0 && m-1<=n+2) {
            flagb = 1;
            for(int i = 1; i <= n+2; ++i) {
                if(i <= n) b = b * i;
                if(i > n-m+3) b = b * i;
            }
            b = b * (2*m*(n+1));
        }
        if(!flaga) a.val[0] = 0;
        if(flagb) a = a + b;
        a.print(); 
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值