- 非递归实现深度优先遍历的主要问题出在如何回退上
- 这里使用栈来代替递归实现类似的作用
- 返回值k是访问过的顶点数起到了类似深度的作用
1.栈初始化
2.起始点入栈
3.循环语句直到栈为空 {
1.取栈顶元素,不出栈(如果出栈,造成信息丢失,那么回退将无法进行)
2.找未被访问的邻接点,如果没有就出栈一个元素(回退),如果有就将 其进栈,并置访问标记为1。记录这条边进tree数组 }
int Graph_DepthFirst(Graph*g, int start, Edge* tree)
//从start号顶点出发深度优先遍历,(编号从开始)
//返回访问到的顶点数,
//tree[]输出遍历树
//返回的tree[0]是(-1, start),
//真正的遍历树保存在tree[1..return-1], return是返回值
//顶点的访问次序依次为tree[0].to, tree[1].to, ..., tree[return-1].to
//输入时,tree[]的长度至少为顶点数
//返回值是从start出发访问到的顶点数
{
/*请在BEGIN和END之间实现你的代码*/
/*****BEGIN*****/
int stack[g->n]={0};
int top=-1;
int visited[g->n]={0};
int k=0,i,j,w=start;
visited[start]=1;
tree[k].from=-1;
tree[k++].to=start;
stack[++top]=start; //start入栈
while(top>=0)
{
w=stack[top]; //取栈顶元素
for(i=w,j=0;;j++)
{
if(j>g->n-1) //未找到没被访问过的邻接点
{
top--; //出栈
break;
}
if((g->adj[i*(g->n)+j]) && visited[j]==0)
{
visited[j]=1; //已访问
stack[++top]=j; //j进栈
tree[k].from=i;
tree[k++].to=j;
break;
}
}
}
return k;
/*****END*******/
}