redis之删除策略
1.过期数据
Redis中的数据特征: Redis是一种内存级数据库,所有数据均存放在内存中,内存中的数据可以通过TTL指令获取其状态
- XX : 具有时效性的数据
- -1 : 永久有效的数据
- -2 : 已经过期的数据 或 被删除的数据 或 未定义的数据
过期的数据真的被删除了吗
2. 数据删除策略
- 定时删除
- 惰性删除
- 定期删除
数据删除策略的目标 - redis中用一个hash结构数据存放地址和过期时间,而删除策略就是基于这块hash数据结构
- 我们需要在内存占用与CPU占用之间寻找一种平衡,顾此失彼都会造成整体redis性能的下降,甚至引发服务器宕机或内存泄漏。CPU忙时暂且不维护内存,闲时再来进行内存释放
定时删除
- 创建一个定时器,当key设置过期时间,且过期时间到达时,由定时器任务立即执行键的删除
优点: - 节约内存,到时就删除,快速释放掉不必要的内存占用
缺点: - CPU压力很大,无论CPU此时负载量多高,均占用CPU,会影响redis服务器的相应时间和指令吞吐量
总结:用性能换内存(拿时间换空间)
惰性删除
- 数据到达过期时间后,不做处理。等下次访问该数据时:
- 如果发现没到期,返回数据
- 如果发现到期,删除,返回不存在
优点:
- 节约CPU性能,发现必须删除的时候才删除
缺点: - 内存压力大,出现长期占用内存的数据
总结:用存储空间换性能(拿空间换时间)
只要是调用操作数据的指令,都会先执行expireIfNeeded()
定期删除
- 周期性轮询redis库中的时效性数据,采用随机抽取的策略,利用过期数据占比的方式控制删除频度
优点:
- CPU性能占用设置有峰值,检测频度可自定义设置
- 内存压力不是很大,长期占用内存的冷数据会被持续清理
总结:周期性抽查存储空间(查询某个库的expires时,如果这轮删除过多,则再抽取删除一轮,如果这轮删除的很少,则去检查下一个库的expires)
三种删除策略的对比
逐出算法
- Redis使用内存存储数据,在执行每一个命令前,会调用freeMemoryIfNeeded()检测内存是否充足。如果内存不满足新加入数据的最低存储要求,redis要临时删除一些数据为当前指令清理存储空间。清理数据的策略称为逐出算法
注意:逐出数据的过程不是100%能够清理出足够的可使用的内存空间,如果不成功则反复执行。当对所有数据尝试完毕后,如果不能达到内存清理的要求,将出现如下错误信息:
最大可使用内存
maxmemory #占用物理内存的比例,默认值为0,表示不限制,生产环境中根据需求设定,通常在50%以上
每次选取待删除数据的个数
maxmemory-samples # 选取数据并不会全库扫描,导致严重的性能消耗,降低读写性能,因此采用随机获取数据的方式作为待检测的删除的数据
删除策略:
maxmemory-policy # 达到最大内存后的,对被挑选出来的数据进行删除的策略
影响数据逐出的相关配置
检查可能会过期的数据集server.db[i].expires内的数据
- volatile-lru:挑选最近最少使用(最长时间不使用的)的数据淘汰,使用较多
- volatile-lfu:挑选最近使用次数最少的数据淘汰
- volatile-ttl :挑选将要过期的数据淘汰
- volatile-random:任意选择数据淘汰,一般用的少
检测全库数据(所有数据集server.db[i].dict) - allkeys-lru:挑选最近最少使用的数据淘汰
- allkeys-lfu:挑选最近使用次数最少的数据淘汰
- allkeys-random:任意选择数据淘汰
放弃数据驱逐
- no-enviction(驱逐):禁止驱逐数据(redis4.0中默认策略),会引发错误OOM(Out Of Memory)
我们可以使用INFO命令输出监控信息,查询缓存int和miss的次数,根据业务需求调优Redis配置