【题目链接】
【算法】
显然,越狱情况数 = 总情况数 - 不能越狱的情况数
很容易发现,总情况数 = M^N
不能越狱的情况数怎么求呢? 我们发现,不能越狱的情况,其实就是第一个人任选一种宗教,后面n-1个人,每个人都选
一种与前面一个人不同的宗教,所以第一个人有M种选法,后N-1个人,每个人都有M-1种选法,因此,不能越狱的情况
数 = M * (M - 1)^(N - 1)
所以,越狱情况数 = M ^ N - M * (M - 1)^(N - 1)
注意算乘方时,要用到快速幂
【代码】
#include<bits/stdc++.h>
using namespace std;
const long long MOD = 100003;
long long n,m,ans1,ans2;
template <typename T> inline void read(T &x) {
long long f = 1; x = 0;
char c = getchar();
for (; !isdigit(c); c = getchar()) { if (c == '-') f = -f; }
for (; isdigit(c); c = getchar()) x = (x << 3) + (x << 1) + c - '0';
x *= f;
}
template <typename T> inline void write(T x) {
if (x < 0) { putchar('-'); x = -x; }
if (x > 9) write(x/10);
putchar(x%10+'0');
}
template <typename T> inline void writeln(T x) {
write(x);
puts("");
}
long long power(long long a,long long n) {
long long res;
if (n == 0) return 1;
if (n == 1) return a % MOD;
res = power(a,n>>1);
res = (res * res) % MOD;
if (n & 1) res = res * a % MOD;
return res;
}
int main() {
read(m); read(n);
ans1 = power(m,n);
ans2 = ((m % MOD) * power(m-1,n-1)) % MOD;
writeln((ans1-ans2+MOD)%MOD);
return 0;
}