【HNOI 2008】 越狱

【题目链接】

           点击打开链接

【算法】

          显然,越狱情况数 = 总情况数 - 不能越狱的情况数

          很容易发现,总情况数 = M^N

          不能越狱的情况数怎么求呢? 我们发现,不能越狱的情况,其实就是第一个人任选一种宗教,后面n-1个人,每个人都选

         一种与前面一个人不同的宗教,所以第一个人有M种选法,后N-1个人,每个人都有M-1种选法,因此,不能越狱的情况

         数 = M * (M - 1)^(N - 1)

         所以,越狱情况数 = M ^ N - M * (M - 1)^(N - 1)

         注意算乘方时,要用到快速幂

【代码】

          

#include<bits/stdc++.h>
using namespace std;
const long long MOD = 100003;

long long n,m,ans1,ans2;

template <typename T> inline void read(T &x) {
		long long f = 1; x = 0;
		char c = getchar();
		for (; !isdigit(c); c = getchar()) { if (c == '-') f = -f; }
		for (; isdigit(c); c = getchar()) x = (x << 3) + (x << 1) + c - '0';
		x *= f;
}
template <typename T> inline void write(T x) {
    if (x < 0) { putchar('-'); x = -x; }
    if (x > 9) write(x/10);
    putchar(x%10+'0');
}
template <typename T> inline void writeln(T x) {
    write(x);
    puts("");
}
long long power(long long a,long long n) {
		long long res;
		if (n == 0) return 1;
		if (n == 1) return a % MOD;
		res = power(a,n>>1);
		res = (res * res) % MOD;
		if (n & 1) res = res * a % MOD;
		return res;	
}

int main() {
		
		read(m); read(n);
		ans1 = power(m,n);
		ans2 = ((m % MOD) * power(m-1,n-1)) % MOD;
		writeln((ans1-ans2+MOD)%MOD);
		
		return 0;
	
}

          

根据引用\[1\]和引用\[2\]的描述,题目中的影魔拥有n个灵魂,每个灵魂有一个战斗力ki。对于任意一对灵魂对i,j (i<j),如果不存在ks (i<s<j)大于ki或者kj,则会为影魔提供p1的攻击力。另一种情况是,如果存在一个位置k,满足ki<c<kj或者kj<c<ki,则会为影魔提供p2的攻击力。其他情况下的灵魂对不会为影魔提供攻击力。 根据引用\[3\]的描述,我们可以从左到右进行枚举。对于情况1,当扫到r\[i\]时,更新l\[i\]的贡献。对于情况2.1,当扫到l\[i\]时,更新区间\[i+1,r\[i\]-1\]的贡献。对于情况2.2,当扫到r\[i\]时,更新区间\[l\[i\]+1,i-1\]的贡献。 因此,对于给定的区间\[l,r\],我们可以根据上述方法计算出区间内所有下标二元组i,j (l<=i<j<=r)的贡献之和。 #### 引用[.reference_title] - *1* *3* [P3722 [AH2017/HNOI2017]影魔(树状数组)](https://blog.csdn.net/li_wen_zhuo/article/details/115446022)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [洛谷3722 AH2017/HNOI2017 影魔 线段树 单调栈](https://blog.csdn.net/forever_shi/article/details/119649910)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值