【HDU 2157】 How Many Ways??

【题目链接】

            点击打开链接

【算法】

           设A[i][j]为走一条边,从i走到j的方案数

           C[i][j]为走两条边,从i走到j的方案数,显然有 : C = A * A = A^2

           C'[i][j]为走三条边,从i走到j的方案数,那么 : C' = C * A = (A * A) * A = A^3

           .......

          因此,要求走n条边的方案数,只需通过矩阵乘法快速幂,计算A^n就可以了

 【代码】

            注意,一个n阶矩阵的零次幂是n阶单位阵(对角线上的都是1,其余都是0)

#include<bits/stdc++.h>
using namespace std;
#define MAXN 25
const int MOD = 1000;

int n,m,s,t,a,b,k;
struct Matrix
{
    int mat[MAXN][MAXN];
} c,ans;

inline void multipy(Matrix &a,Matrix b)
{
    int i,j,k;
    Matrix ans;
    memset(ans.mat,0,sizeof(ans.mat));
    for (i = 0; i < n; i++)
    {
        for (j = 0; j < n; j++)
        {
            for (k = 0; k < n; k++)
            {
                ans.mat[i][j] = (ans.mat[i][j] + a.mat[i][k] * b.mat[k][j]) % MOD;
            }
        }
    }
    a = ans;
}

inline Matrix power(Matrix a,int n,int s)
{
    int i,j;
    Matrix ans,p = a;
    for (i = 0; i < s; i++)
    {
        for (j = 0; j < s; j++)
        {
            ans.mat[i][j] = (i == j);
        }
    }
    while (n > 0)
    {
        if (n & 1) multipy(ans,p);
        multipy(p,p);
        n >>= 1;
    }
    return ans;
}

int main()
{
    
    while (scanf("%d%d",&n,&m) != EOF)
    {
        if (!n && !m) break;
        memset(c.mat,0,sizeof(c.mat));
        while (m--)
        {
            scanf("%d%d",&s,&t);
            c.mat[s][t] = 1;    
        }    
        scanf("%d",&t);
        while (t--)
        {
            scanf("%d%d%d",&a,&b,&k);
            ans = power(c,k,n);
            printf("%d\n",ans.mat[a][b]);
        }
    }
    
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值