建模调参前期

#导入数据
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from operator import itemgetter

%matplotlib inline
##载入训练集合测试集
test_data = pd.read_csv(r'C:\Users\MUJI\Desktop\二手车预测\used_car_testA_20200313.csv',sep=' ')
train_data = pd.read_csv(r'C:\Users\MUJI\Desktop\二手车预测\used_car_train_20200313.csv',sep=' ')

线性回归

# 简单的线性建模
from sklearn.linear_model import LinearRegression
model = LinearRegression(normalize=True)
model = model.fit(train_X, train_y)
print('intercept:'+ str(model.intercept_))
print(sorted(dict(zip(continuous_feature_names, model.coef_)).items(), key=lambda x:x[1], reverse=True))

贝叶斯调参

from bayes_opt import BayesianOptimization

def rf_cv(num_leaves, max_depth, subsample, min_child_samples):
val = cross_val_score(
LGBMRegressor(objective = ‘regression_l1’,
num_leaves=int(num_leaves),
max_depth=int(max_depth),
subsample = subsample,
min_child_samples = int(min_child_samples)
),
X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error)
).mean()
return 1 - val

rf_bo = BayesianOptimization(
rf_cv,
{
‘num_leaves’: (2, 100),
‘max_depth’: (2, 100),
‘subsample’: (0.1, 1),
‘min_child_samples’ : (2, 100)
}
)

模型验证

五折交叉验证

# 交叉验证
from sklearn.model_selection import cross_val_score
from sklearn.metrics import mean_absolute_error,  make_scorer

def log_transfer(func):
    def wrapper(y, yhat):
        result = func(np.log(y), np.nan_to_num(np.log(yhat)))
        return result
    return wrapper
# 使用线性模型对未经过 log 变换的数据进行预测
scores = cross_val_score(model, X=train_X, y=train_y_org, verbose=1, cv = 5, scoring=make_scorer(log_transfer(mean_absolute_error)))
print('AVG-org:', np.mean(scores))
# 使用线性模型对 log 变换后的数据进行预测
scores = cross_val_score(model, X=train_X, y=train_y, verbose=1, cv = 5, scoring=make_scorer(log_transfer(mean_absolute_error)))
print('AVG:', np.mean(scores))
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,以下是一个基于Python和Scikit-learn库的多属性价格预测建模调参的示例代码。这里使用了随机森林回归模型,你可以根据自己的需求选择其他的模型。 首先,我们需要导入必要的库和数据集: ```python import pandas as pd import numpy as np from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import train_test_split, RandomizedSearchCV # 读取数据集 df = pd.read_csv('data.csv') ``` 然后,我们需要对数据集进行预处理,包括处理缺失值、转换数据类型、划分训练集和测试集等: ```python # 处理缺失值 df = df.dropna() # 转换数据类型 df['age'] = pd.to_numeric(df['age'], errors='coerce') df['mileage'] = pd.to_numeric(df['mileage'], errors='coerce') df['price'] = pd.to_numeric(df['price'], errors='coerce') # 划分训练集和测试集 X = df.drop(['price'], axis=1) y = df['price'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) ``` 接着,我们需要对模型进行调参。这里我们使用了随机搜索(RandomizedSearchCV)方法来搜索最优的超参数,包括n_estimators(决策树个数)、max_depth(决策树深度)、min_samples_split(内部节点再划分所需最小样本数)等: ```python # 定义模型和超参数搜索空间 rf = RandomForestRegressor() params = { 'n_estimators': [100, 200, 300, 400, 500], 'max_depth': [10, 20, 30, 40, 50], 'min_samples_split': [2, 5, 10, 20, 30] } # 随机搜索最优超参数 random_search = RandomizedSearchCV(rf, param_distributions=params, n_iter=10, cv=5, n_jobs=-1, random_state=42) random_search.fit(X_train, y_train) # 输出最优超参数和训练集上的得分 print('Best Params:', random_search.best_params_) print('Training Score:', random_search.best_score_) ``` 最后,我们使用得到的最优超参数来训练模型,并在测试集上进行评估: ```python # 训练模型 rf = RandomForestRegressor(n_estimators=300, max_depth=30, min_samples_split=2) rf.fit(X_train, y_train) # 在测试集上进行评估 y_pred = rf.predict(X_test) score = rf.score(X_test, y_test) print('Test Score:', score) ``` 至此,我们完成了多属性价格预测建模调参的代码。当然,这只是一个简单的示例,实际应用中需要根据具体情况进行调整。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值