AI体验-基于逻辑回归的分类预测

前言

本次的机器学习基础巩固是基于天池实验室-实时在线数据分析工具进行学习的,逻辑回归为第一章章节。所以此章节分为两部分,前面的部分是对实验工具的了解与使用,后半部分是对逻辑回归的内在描述和应用。

因为本次学习是对学习器的巩固学习,所以此时对于模型的评估,超参数、参数、过/欠拟合和监督式/无监督式学习算法不予介绍。

天池实验室-AI算法学习体验

点击“开始体验”,进入体验环节,整个体验环节如下图所示:
在这里插入图片描述

  1. 第一部分显示的题目,右侧可以直接结束实验,实验体验是有完成时间,时间为1小时。
  2. 第二部分是个人的空间以及对应的数据,类似于可打开调用的文件。
  3. 第三部分是代码区,可执行保存对应的代码,上面一行是命令行。
  4. 第四部分是实验手册,即安排的对应学习内容,包括code,上下页可对内容进行翻页阅读。

基于逻辑回归的分类预测

进入学习逻辑回归分类预测的正题,对于这部分的学习主要包括了三个部分:

  1. Demo实践:实践出真知,实践一遍后会对算法有个大体初步的了解。
  2. 逻辑回归的原理介绍:了解原理才能对算法有阵深入的理解,对算法的应用更加有效。
  3. 逻辑回归的案例应用L:基于鸢尾花(iris)数据集的洛基回归分类实践,是典型的案例。

Demo实践

### 导入函数库
import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.linear_model import LogisticRegression
### 构造数据集
x_features = np.array([[-1, -2], [-2, -1], [-3, -2], [1, 3], [2, 1], [3, 2]])
y_label = np.array([0, 0, 0, 1, 1, 1])

lr_clf = LogisticRegression()

lr_clf = lr_clf.fit(x_fearures, y_label) 
#拟合方程为 y=w0+w1*x1+w2*x2
### 模型参数查看

#查看其对应模型的w,即上述方程的w1和w2
print('the weight of Logistic Regression:',lr_clf.coef_)

##查看其对应模型的w0
print('the intercept(w0) of Logistic Regression:',lr_clf.intercept_)

在这里插入图片描述

### 模型和数据可视化
plt.figure()
plt.scatter(x_features[:,0],x_features[:,1],c=y_label, s=30, cmap='Paired')
#cmap代表设置scatter的颜色渐变,可多选
plt.title("Dataset")

### 可视化决策边界-二分类画条辅助线分开,显现更明显
nx, ny = 200, 100            #下文的个数限制
x_min, x_max = plt.xlim()    #设置x轴的范围
y_min, y_max = plt.ylim()    #设置y轴的范围
x_grid, y_grid = np.meshgrid(np.linspace(x_min, x_max, nx),np.linspace(y_min, y_max, ny))
#np.meshgrid生成网格点坐标矩阵,根据后面的数列生成网格点坐标矩阵。

z_proba = lr_clf.predict_proba(np.c_[x_grid.ravel(), y_grid.ravel()])
#np.c_按行连接两个矩阵,左右相加,行数相等即可
z_proba = z_proba[:, 1].reshape(x_grid.shape)
plt.contour(x_grid, y_grid, z_proba, [0.6], linewidths=2., colors='blue')

plt.show()

在这里插入图片描述

上述图片是对分类散点的可视化,分别对点进行分类,可视化不同的颜色,并且加入辅助线将点显著分为两类,下面会加入新点进行分类可视化。
### 可视化预测新样本

plt.figure()
## new point 1
x_fearures_new1 = np.array([[0, -1]])
plt.scatter(x_fearures_new1[:,0],x_fearures_new1[:,1], s=30, cmap='Paired')
plt.annotate(s='New point 1',xy=(0,-1),xytext=(-2,0),color='blue',arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red'))

## new point 2
x_fearures_new2 = np.array([[1, 2]])
plt.scatter(x_fearures_new2[:,0],x_fearures_new2[:,1], s=30, cmap='Paired')
plt.annotate(s='New point 2',xy=(1,2),xytext=(-1.5,2.5),color='red',arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red'))

## 训练样本
plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='Paired')
plt.title('Dataset')

# 可视化决策边界
plt.contour(x_grid, y_grid, z_proba, [0.5], linewidths=2., colors='blue')

plt.show()

在这里插入图片描述

### 模型预测
'''在训练集和测试集上分布利用训练好的模型进行预测'''
y_label_new1_predict=lr_clf.predict(x_features_new1)
y_label_new2_predict=lr_clf.predict(x_features_new2)
print('The New point 1 predict class:\n',y_label_new1_predict)
print('The New point 2 predict class:\n',y_label_new2_predict)
##由于逻辑回归模型是概率预测模型(前文介绍的p = p(y=1|x,\theta)),可以利用predict_proba函数预测其概率
y_label_new1_predict_proba=lr_clf.predict_proba(x_fearures_new1)
y_label_new2_predict_proba=lr_clf.predict_proba(x_fearures_new2)
print('The New point 1 predict Probability of each class:\n',y_label_new1_predict_proba)
print('The New point 2 predict Probability of each class:\n',y_label_new2_predict_proba)

在这里插入图片描述

逻辑回归算法原理

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

鸢尾花案例分析

import numpy as np 
import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns

此次选择鸢花数据(iris)进行方法的尝试训练,该数据集一共包含5个变量,其中4个特征变量,1个目标分类变量。共有150个样本,目标变量为 花的类别 其都属于鸢尾属下的三个亚属,分别是山鸢尾 (Iris-setosa),变色鸢尾(Iris-versicolor)和维吉尼亚鸢尾(Iris-virginica)。包含的三种鸢尾花的四个特征,分别是花萼长度(cm)、花萼宽度(cm)、花瓣长度(cm)、花瓣宽度(cm),这些形态特征在过去被用来识别物种。

  • sepal length:花萼长度(cm)
  • sepal width:花萼宽度(cm)
  • petal length:花瓣长度(cm)
  • petal width:花瓣宽度(cm)
  • target:鸢尾的三个亚属类别,‘setosa’(0), ‘versicolor’(1), ‘virginica’(2)
#数据载入
from sklearn.datasets import load_iris
data = load_iris() #得到数据特征
iris_target = data.target #得到数据对应的标签
iris_features = pd.DataFrame(data=data.data, columns=data.feature_names)
iris_features.info()
iris_features.head()
# 查看特征的分布数量
pd.Series(iris_target).value_counts()
#统计分析
iris_features.describe()

可视化描述

## 合并标签和特征信息
iris_all = iris_features.copy() ##进行浅拷贝,防止对于原始数据的修改
iris_all['target'] = iris_target
## 特征与标签组合的散点可视化
sns.pairplot(data=iris_all,diag_kind='hist', hue= 'target')
plt.show()

在这里插入图片描述

#箱型图
for col in iris_features.columns:
    sns.boxplot(x='target', y=col, saturation=0.5, 
palette='pastel', data=iris_all)
    plt.title(col)
    plt.show()

在这里插入图片描述
在这里插入图片描述

## 选取其前三个特征绘制三维散点图
from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure(figsize=(10,8))
ax = fig.add_subplot(111, projection='3d')

iris_all_class0 = iris_all[iris_all['target']==0].values
iris_all_class1 = iris_all[iris_all['target']==1].values
iris_all_class2 = iris_all[iris_all['target']==2].values
# 'setosa'(0), 'versicolor'(1), 'virginica'(2)
ax.scatter(iris_all_class0[:,0], iris_all_class0[:,1], iris_all_class0[:,2],label='setosa')
ax.scatter(iris_all_class1[:,0], iris_all_class1[:,1], iris_all_class1[:,2],label='versicolor')
ax.scatter(iris_all_class2[:,0], iris_all_class2[:,1], iris_all_class2[:,2],label='virginica')
plt.legend()

plt.show()

在这里插入图片描述

应用逻辑回归模型进行二分类的训练和预测

##为了正确评估模型性能,将数据划分为训练集和测试集,并在训练集上训练模型,在测试集上验证模型性能。
from sklearn.model_selection import train_test_split
##选择其类别为0和1的样本(不包括类别为2的样本)
iris_features_part=iris_features.iloc[:100]
iris_target_part=iris_target[:100]
##测试集大小为20%,80%/20%分
x_train,x_test,y_train,y_test=train_test_split(iris_features_part,iris_target_part,test_size=0.2,random_state=2020)

from sklearn.linear_model import LogisticRegression

clf=LogisticRegression(random_state=0,solver='lbfgs')
clf.fit(x_train,y_train)
##查看其对应的w
print('the weight of Logistic Regression:',clf.coef_)

##查看其对应的w0
print('the intercept(w0) of Logistic Regression:',clf.intercept_)

##在训练集和测试集上分布利用训练好的模型进行预测
train_predict=clf.predict(x_train)
test_predict=clf.predict(x_test)

from sklearn import metrics
##利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))

##查看混淆矩阵(预测值和真实值的各类情况统计矩阵)
confusion_matrix_result=metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)

##利用热力图对于结果进行可视化
plt.figure(figsize=(8,6))
sns.heatmap(confusion_matrix_result,annot=True,cmap='Blues')
plt.xlabel('Predictedlabels')
plt.ylabel('Truelabels')
plt.show()

##The accuracy of the Logistic Regressionis:1.0
##The accuracy of the Logistic Regressionis:1.0
##The confusion matrix result:
##[[9  0]
##[0  11]]

在这里插入图片描述

应用逻辑回归模型在三分类(多分类)进行训练和预测

##测试集大小为20%,八二分
x_train,x_test,y_train,y_test=train_test_split(iris_features,iris_target,test_size=0.2,random_state=2020)

clf=LogisticRegression(random_state=0,solver='lbfgs')
clf.fit(x_train,y_train)

##查看其对应的w
print('the weight of Logistic Regression:\n',clf.coef_)
##查看其对应的w0
print('the intercept(w0) of Logistic Regression:\n',clf.intercept_)
##由于这个是3分类,所有我们这里得到了三个逻辑回归模型的参数,其三个逻辑回归组合起来即可实现三分类

##在训练集和测试集上分布利用训练好的模型进行预测
train_predict=clf.predict(x_train)
test_predict=clf.predict(x_test)
##由于逻辑回归模型是概率预测模型(前文介绍的p=p(y=1|x,\theta)),所有我们可以利用predict_proba函数预测其概率

train_predict_proba=clf.predict_proba(x_train)
test_predict_proba=clf.predict_proba(x_test)

print('The test predict Probability of each class:\n',test_predict_proba)
##其中第一列代表预测为0类的概率,第二列代表预测为1类的概率,第三列代表预测为2类的概率。

##利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))
##查看混淆矩阵
confusion_matrix_result=metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)

##利用热力图对于结果进行可视化
plt.figure(figsize=(8,6))
sns.heatmap(confusion_matrix_result,annot=True,cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()

##The confusion matrix result:
##[[10  0   0]
##[0   8   2] 
##[0   2   8]]

在这里插入图片描述

参考文献

https://blog.csdn.net/YZXnuaa/article/details/79551447?utm_source=blogxgwz4

https://blog.csdn.net/lllxxq141592654/article/details/81532855

https://blog.csdn.net/weixin_41797117/article/details/80048688

https://zhuanlan.zhihu.com/p/56900935

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值