BZOJ2875: [Noi2012]随机数生成器 矩阵乘法+快速乘

原文链接

显然需要用矩阵乘法快速幂

矩阵为:
A 0
C 1

因为mod很大所以直接做乘法会爆掉,在做乘法运算的时候要用一下快速乘

<span style="font-size:14px;">#include<cmath>  
#include<cstdio>  
#include<cstring>  
#include<iostream>  
#include<algorithm>  
using namespace std;  
#define ll long long  
struct matrix {ll ju[3][3];}s,a;  
ll mod,b,c,x0,n,g;  
ll muti(ll p,ll q)  
{  
    ll d=0;  
    while(q)  
    {  
        if(q%2==1) d=(d+p)%mod;  
        p=(p+p)%mod;  
        q/=2;   
    }  
    return d;  
}  
matrix operator*(matrix x,matrix y)  
{  
    matrix ans;  
    for(int i=1;i<=2;i++)  
    for(int j=1;j<=2;j++)  
    ans.ju[i][j]=0;  
    for(int i=1;i<=2;i++)  
    for(int j=1;j<=2;j++)  
    for(int k=1;k<=2;k++)  
    ans.ju[i][j]=(ans.ju[i][j]+muti(x.ju[i][k],y.ju[k][j]))%mod;  
    return ans;  
}  
int main()  
{  
    scanf("%lld%lld%lld%lld%lld%lld",&mod,&b,&c,&x0,&n,&g);  
    s.ju[1][1]=x0,s.ju[1][2]=1;  
    a.ju[1][1]=b,a.ju[2][1]=c,a.ju[2][2]=1;   
    while(n)  
    {  
        if(n%2==1) s=s*a;  
        a=a*a;  
        n/=2;  
    }  
    printf("%lld",s.ju[1][1]%g);  
}  </span>


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值