【题目描述】
信息学院的同学小明毕业之后打算创业开餐馆.现在共有n个地点可供选择。小明打算从中选择合适的位置开设一些餐馆。这 n个地点排列在同一条直线上。我们用一个整数序列m1,m2,…mn来表示他们的相对位置。由于地段关系,开餐馆的利润会有所不同。我们用pi 表示在mi处开餐馆的利润。为了避免自己的餐馆的内部竞争,餐馆之间的距离必须大于k。请你帮助小明选择一个总利润最大的方案。
【输入】
输入第一行是整数 T(1≤T≤1000),表明有T组测试数据。紧接着有T组连续的测试。每组测试数据有3行。
第1行:地点总数n(n<100), 距离限制k(k>0且k<1000);
第2行:n 个地点的位置m1,m2,…mn(1000000>mi>0 且为整数,升序排列);
第3行:n 个地点的餐馆利润p1,p2,…pn(1000>pi>0 且为整数)。
【输出】
对于每组测试数据可能的最大利润。
【输入样例】
2
3 11
1 2 15
10 2 30
3 16
1 2 15
10 2 30
【输出样例】
40
30
【心得】非要按01背包写代码的话,也只能这么干了
【AC代码】
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=105;
int m[N],p[N],f[N];
int main()
{
int k,n,t,ma;
cin>>t;
while(t--)
{
memset(f,0,sizeof(f));
ma=-1;
cin>>n>>k;
for(int i=1;i<=n;i++) cin>>m[i];
for(int i=1;i<=n;i++) cin>>p[i];
for(int i=1;i<=n;i++)
{
f[i]=max(p[i],f[i]);//多次计算取最优
for(int j=i+1;j<=n;j++)
{
if(m[j]-m[i]>k)//满足距离条件
f[j]=max(f[j],f[i]+p[j]);
}
ma=max(ma,f[i]);
}
cout<<ma<<endl;
}
return 0;
}
信息学奥赛策略:最大利润餐馆选址
这篇博客探讨了如何帮助小明在n个不同位置中选择餐馆位置,以实现最大利润。每个位置的利润由pi表示,且餐馆间必须相隔至少k的距离。这是一个涉及动态规划和背包问题的优化挑战。输入包括测试数据集T,每个数据集包含地点数量n、距离限制k以及每个位置的利润。输出是每组测试数据的最大可能利润。样例输入和输出展示了具体的计算结果。
1890

被折叠的 条评论
为什么被折叠?



