数据结构与算法-常用排序算法

常用排序算法的原理、复杂度及应用

承接Qt/C++软件开发项目,高质量交付,灵活沟通,长期维护支持。需求所寻,技术正适,共创完美,欢迎私信联系!

一、常用排序说明

        当涉及排序算法时,理解每个算法的工作原理、时间复杂度和空间复杂度是至关重要的。下面对常用排序算法进行详细说明:     

        1、冒泡排序(Bubble Sort):

        工作原理:比较相邻的元素并交换,每一轮将最大(或最小)的元素移动到数组末尾(或开头)。

        时间复杂度:平均情况和最坏情况均为 O(n^2)。

        空间复杂度:O(1),原地排序,不需要额外空间。

        适用场景:适用于小规模数据集,对稳定性要求高的场景,或者作为教学和理解排序算法的基础。

        2、选择排序(Selection Sort):

        工作原理:每一轮选择最小(或最大)的元素放在已排序序列的末尾(或开头)。

        时间复杂度:平均情况和最坏情况均为 O(n^2)。

        空间复杂度:O(1),原地排序,不需要额外空间。

        适用场景:适用于小规模数据集,简单易实现,但性能较差。对稳定性要求不高的场景。

        3、插入排序(Insertion Sort):

        工作原理:将未排序序列中的元素逐个插入到已排序序列中的适当位置。

        时间复杂度:平均情况和最坏情况均为 O(n^2)。

        空间复杂度:O(1),原地排序,不需要额外空间。

        适用场景:适用于小规模或基本有序的数据集,对稳定性要求高的场景,用于改进其他排序算法的一部分。

        4、希尔排序(Shell Sort):

        工作原理:是插入排序的改进版,通过比较距离较远的元素进行交换,最终使数据基本有序,然后再使用插入排序。

        时间复杂度:取决于增量序列的选择,在实践中介于 O(n log^2 n) 和 O(n^2) 之间。

        空间复杂度:O(1),原地排序,不需要额外空间。

        适用场景:适用于小规模或基本有序的数据集,对稳定性要求高的场景,用于改进其他排序算法的一部分。

        5、归并排序(Merge Sort):

        工作原理:采用分治法,将数组分成两半,分别排序,然后合并两个有序数组。

        时间复杂度:平均情况和最坏情况均为 O(n log n)。

        空间复杂度:O(n),需要额外的内存来存储临时数组。

        适用场景:适用于小规模或基本有序的数据集,对稳定性要求高的场景,用于改进其他排序算法的一部分。

        6、快速排序(Quick Sort):

        工作原理:采用分治法,选取一个基准值,将小于基准值的放在左边,大于基准值的放在右边,然后递归地对左右两部分进行排序。

        时间复杂度:平均情况为 O(n log n),最坏情况为 O(n^2)。

        空间复杂度:取决于实现方式,通常为 O(log n)。

        适用场景:适用于大规模数据集,性能优秀且易于实现。常用于实际生产环境中的排序需求。

        7、堆排序(Heap Sort):

 &

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值