孪生素数
素数是指正因数只有1和本身即只能被自身和1整除的正整数,“孪生素数”则是指两个相差为2的素数,例如3和5,17和19等。而随着素数的增大,下一个素数离上一个素数应该越来越远,故古希腊数学家欧几里得猜想,存在无穷多对素数,他们只相差2,例如3和5,5和7,2003663613×2195000-1和2003663613×2195000+1等等。
正交
向量正交:如果(a,b) = 0, 则称向量a和b正交,也称为垂直。
正交矩阵:如果:AAT=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”。)或ATA=E,则n阶实矩阵A称为正交矩阵。
正交矩阵对向量进行正交变换,且正交变换不改变向量的长度(范数)。
函数正交
如果两个函数ψ1(r)和ψ2(r)满足条件:∫ψ1(r)*ψ2(r)dτ=0,则称这两个函数相互正交。
三角函数系{1,cosx,sinx,cos2x,sin2x,……,cosnx,sinnx,……}在区间[-π,π]上正交,就是指在三角函数系⑴中任何不同的两个函数的乘积在区间[-π,π]上的积分等于0,即
∫[-π->π]cosnxdx=0
∫[-π->π]sinnxdx=0
∫[-π->π]sinkxcosnxdx=0
∫[-π->π]coskxcosnxdx=0
∫[-π->π]sinkxsinnxdx=0
(k,n=1,2,3.....,k≠n)
差分
一阶差分:离散函数中连续相邻两项之差;定义X(k),则Y(k)=X(k+1)-X(k)就是此函数的一阶差分。
二阶差分:Y(k)一阶差分的二阶差分为Z(k)=Y(k+1)-Y(k)=X(k+2)-2*X(k+1)+X(k),Z(k)为此函数的二阶差分。
级数
柯西极限存在准则又叫柯西收敛原理,给出了数列收敛的充分必要条件。数列{Xn}收敛的充分必要条件是:对于任意给定的正数ε,存在着这样的正整数N,使得当m>N,n>N时就有|Xn-Xm|<ε这个准则的几何意义表示,数列{Xn}收敛的充分必要条件是:该数列中足够靠后的任意两项都无限接近。
笛卡尔乘积
这个得出的集合就多了:举个例子.假设集合A={a,b},集合B={c,d}则两个集合的笛卡尔积为{(a,c),(a,d),(b,c),(b,d)}