数学--概念

孪生素数

       素数是指正因数只有1和本身即只能被自身和1整除的正整数,“孪生素数”则是指两个相差为2的素数,例如3和5,17和19等。而随着素数的增大,下一个素数离上一个素数应该越来越远,故古希腊数学家欧几里得猜想,存在无穷多对素数,他们只相差2,例如3和5,5和7,2003663613×2195000-1和2003663613×2195000+1等等。

正交
向量正交:如果(a,b) = 0, 则称向量a和b正交,也称为垂直。

正交矩阵:如果:AAT=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”。)或ATA=E,则n阶实矩阵A称为正交矩阵。

正交矩阵对向量进行正交变换,且正交变换不改变向量的长度(范数)。
函数正交
如果两个函数ψ1(r)和ψ2(r)满足条件:∫ψ1(r)*ψ2(r)dτ=0,则称这两个函数相互正交。
三角函数系{1,cosx,sinx,cos2x,sin2x,……,cosnx,sinnx,……}在区间[-π,π]上正交,就是指在三角函数系⑴中任何不同的两个函数的乘积在区间[-π,π]上的积分等于0,即
∫[-π->π]cosnxdx=0
∫[-π->π]sinnxdx=0
∫[-π->π]sinkxcosnxdx=0
∫[-π->π]coskxcosnxdx=0
∫[-π->π]sinkxsinnxdx=0
(k,n=1,2,3.....,k≠n)

差分

一阶差分:离散函数中连续相邻两项之差;定义X(k),则Y(k)=X(k+1)-X(k)就是此函数的一阶差分。
二阶差分:Y(k)一阶差分的二阶差分为Z(k)=Y(k+1)-Y(k)=X(k+2)-2*X(k+1)+X(k),Z(k)为此函数的二阶差分。

级数

柯西极限存在准则又叫柯西收敛原理,给出了数列收敛的充分必要条件。数列{Xn}收敛的充分必要条件是:对于任意给定的正数ε,存在着这样的正整数N,使得当m>N,n>N时就有|Xn-Xm|<ε这个准则的几何意义表示,数列{Xn}收敛的充分必要条件是:该数列中足够靠后的任意两项都无限接近。

笛卡尔乘积

这个得出的集合就多了:举个例子.假设集合A={a,b},集合B={c,d}则两个集合的笛卡尔积为{(a,c),(a,d),(b,c),(b,d)}

内容概要:本文详细介绍了施耐德M580系列PLC的存储结构、系统硬件架构、上电写入程序及CPU冗余特性。在存储结构方面,涵盖拓扑寻址、Device DDT远程寻址以及寄存器寻址三种方式,详细解释了不同类型的寻址方法及其应用场景。系统硬件架构部分,阐述了最小系统的构建要素,包括CPU、机架模块的选择与配置,并介绍了常见的系统拓扑结构,如简单的机架间拓扑远程子站以太网菊花链等。上电写入程序环节,说明了通过USB以太网两种接口进行程序下载的具体步骤,特别是针对初次下载时IP地址的设置方法。最后,CPU冗余部分重点描述了热备功能的实现机制,包括IP通讯地址配置热备拓扑结构。 适合人群:从事工业自动化领域工作的技术人员,特别是对PLC编程及系统集成有一定了解的工程师。 使用场景及目标:①帮助工程师理解施耐德M580系列PLC的寻址机制,以便更好地进行模块配置编程;②导工程师完成最小系统的搭建,优化系统拓扑结构的设计;③提供详细的上电写入程序南,确保程序下载顺利进行;④解释CPU冗余的实现方式,提高系统的稳定性可靠性。 其他说明:文中还涉及一些特殊模块的功能介绍,如定时器事件Modbus串口通讯模块,这些内容有助于用户深入了解M580系列PLC的高级应用。此外,附录部分提供了远程子站热备冗余系统的实物图片,便于用户直观理解相关概念
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值