图像处理--理论
山西茄子
多媒体工程师,从事ffmpeg,gstreamer,视频编码,deepstream等开发,做做笔记。
展开
-
图像增强
发展 20世纪20年代图片第一次通过海底电缆从伦敦传往纽约。当时人们通过字符模拟得到中间色调的方法来还原图像。早期的图像增强技术往往涉及硬件参数的设置,如打印过程的选择和亮度等级的分布等问题。在1921年年底提出了一种基于光学还原的新技术。在这一时期由于引入了一种用编码图像纸带去调制光束达到调节底片感光程度的方法,使灰度等级从5个灰度级增加到15个灰度等级,这种方法明显改善了图像转载 2013-06-19 16:31:59 · 4937 阅读 · 0 评论 -
感知哈希
下面是简单的步骤,来说明对图像进行PHA的运算过程:第一步,缩小尺寸。最快速的去除高频和细节,只保留结构明暗的方法就是缩小尺寸。将图片缩小到8x8的尺寸,总共64个像素。摒弃不同尺寸、比例带来的图片差异。第二步,简化色彩。将缩小后的图片,转为64级灰度。也就是说,所有像素点总共只有64种颜色。第三步,计算DCT(离散余弦变换)。DCT是把图片分解频率聚集和梯状形,虽然J转载 2017-04-05 17:12:17 · 592 阅读 · 1 评论 -
图像卷积
数字信号处理中卷积 数字图像是一个二维的离散信号,对数字图像做卷积操作其实就是利用卷积核(卷积模板)在图像上滑动,将图像点上的像素灰度值与对应的卷积核上的数值相乘,然后将所有相乘后的值相加作为卷积核中间像素对应的图像上像素的灰度值,并最终滑动完所有图像的过程。中值滤波:基于排序统计理论的一种能有效抑制噪声的非线性平滑滤波信号处理技术。中值滤波的特点即是首先确定一个以某个像素为中心点的邻...转载 2017-04-07 14:49:03 · 551 阅读 · 0 评论 -
亚像素
面阵摄像机的成像面以像素为最小单位。例如某CMOS摄像芯片,其像素间距为5.2微米。摄像机拍摄时,将物理世界中连续的图像进行了离散化处理。到成像面上每一个像素点只代表其附近的颜色。至于“附近”到什么程度?就很困难解释。两个像素之间有5.2微米的距离,在宏观上可以看作是连在一起的。但是在微观上,它们之间还有无限的更小的东西存在。这个更小的东西我们称它为“亚像素”。实际上“亚像素”应该是存在的,只是硬转载 2013-08-19 13:22:49 · 1063 阅读 · 0 评论 -
图像处理--概念
对一张图像不断的模糊之后向下采样,得到不同分辨率的图像,同时每次得到的新的图像宽与高是原来图像的1/2, 最常见就是基于高斯的模糊之后采样,得到的一系列图像称为高斯金字塔。转载 2013-06-19 21:35:50 · 921 阅读 · 0 评论 -
图像处理--腐蚀与膨胀
先来定义一些基本符号和关系。1. 元素设有一幅图象X,若点a在X的区域以内,则称a为X的元素,记作a∈X,如图6.1所示。2. B包含于X设有两幅图象B,X。对于B中所有的元素ai,都有ai∈X,则称B包含于(included in)X,记作BX,如图6.2所示。3. B击中X设有两幅图象B,X。若存在这样一个点,它即是B的元素原创 2012-08-23 08:29:31 · 2729 阅读 · 0 评论 -
图像处理--图像拼接技术
一 意义 图像拼接(image mosaic)是一个日益流行的研究领域,他已经成为照相绘图学、计算机视觉、图像处理和计算机图形学研究中的热点。图像拼接解决的问题一般式,通过对齐一系列空间重叠的图像,构成一个无缝的、高清晰的图像,它具有比单个图像更高的分辨率和更大的视野。 早期的图像拼接研究一直用于照相绘图学,主要是对大量航拍或卫星的图像的整合。近年来随着图像转载 2013-06-15 10:42:52 · 4451 阅读 · 0 评论 -
图像分析--灰度化,二值化,反色,饱和度,对比度
灰度化 在RGB模型中,如果R=G=B时,则彩色表示一种灰度颜色,其中R=G=B的值叫灰度值,因此,灰度图像每个像素只需一个字节存放灰度值(又称强度值、亮度值),灰度范围为0-255。0%的灰度RGB数值是255,255,255;1%灰度的RGB数值是253,253,253;2%灰度RGB值为250,250,250。一般有以下四种方法对彩色图像进行灰度化: 1.分量法 将彩色图像中的...原创 2012-08-24 20:34:27 · 32031 阅读 · 1 评论 -
图像锐化 边缘检测的一些基础知识
锐化的概念,我们从锐度开始谈起。很多人都以为锐度就是Sharpness,其实在数字图像的领域, 这个锐度更准确的说法是acutance, 万能的Wiki给出了 acutance 的标准的定义。In photography,acutance is the edge contrast of an image。 这句话已经说的非常清晰了, 锐度的意思就是边缘的对比度。(这里的边缘指的就是图像中的物件的边转载 2012-10-28 18:27:30 · 2669 阅读 · 0 评论 -
图象的压缩编码
在介绍图象的压缩编码之前,先考虑一个问题:为什么要压缩?其实这个问题不用我回答,你也能想得到。因为图象信息的数据量实在是太惊人了。举一个例子就明白:一张A4(210mm×297mm)幅面的照片,若用中等分辨率(300dpi)的扫描仪按真彩色扫描,其数据量为多少?让我们来计算一下:共有(300×210/25.4) ×(300×297/25.4)个象素,每个象素占3个字节,其数据量为26M字节,其转载 2012-04-25 15:10:37 · 2071 阅读 · 0 评论 -
数字图像--图象的平滑
灰度图 把白色与黑色之间按对数关系分为若干等级,称为灰度。灰度分为256阶。用灰度表示的图像称作灰度图。 除了常见的卫星图像、航空照片外,许多地球物理观测数据也以灰度表示。以位场图像为例,把位场表示为灰度图,需要将位场观测值灰度量化,即将场的变化范围转换成256阶的灰度范围。由于位场的动态变化范围非常大,磁场可达数万个纳特,重力场也可能在数百个重力单位内变化,原创 2012-08-19 10:28:27 · 1170 阅读 · 0 评论 -
图像处理--边沿检测与提取,轮廓跟踪
我们给出一个模板[-1,0,1]和一幅图象。不难发现原图中左边暗,右边亮,中间存在着一条明显的边界。进行模板操作后的结果如下:。可以看出,第3、4列比其他列的灰度值高很多,人眼观察时,就能发现一条很明显的亮边,其它区域都很暗,这样就起到了边沿检测的作用。 为什么会这样呢?仔细看看那个模板就明白了,它的意思是将右邻点的灰度值减左邻点的灰度值作为该点的灰度值。在灰度相近的区域内,这么做的结果原创 2013-03-20 08:23:51 · 3272 阅读 · 0 评论 -
图像处理基本算法-直方图均衡
直方图拉伸 直方图变换的核心就是变换函数,s=T(r),r是变换前的灰度值,s是变换后的灰度值,如要我们想将[a,b]区间的灰度变换到[0,255]范围内,则变换函数是:T(r)=255*(r-a)/(b-a)。直方图均衡直方图是多种空间处理技术的基础,可以用于图像增强。同时在其他的处理方法中也十分有用,比如图像压缩和分割。基本的原理:Ni = 255*(N0 + N1 + N2 +……Ni...转载 2012-09-04 15:36:27 · 884 阅读 · 0 评论 -
调色板,真彩色,DDB,DIB,BMP,RGB,YUV
调色板 我们知道,自然界中的所有颜色都可以由红、绿、蓝(R,G,B)组合而成。有的颜色含有红色成分多一些,如深红;有的含有红色成分少一些,如浅红。针对含有红色成分的多少,可以分成0到255共256个等级,0级表示不含红色成分;255级表示含有100%的红色成分。同样,绿色和蓝色也被分成256级。这种分级概念称为量化。这样,根据红、绿、蓝各种不同的组合我们就能表示出256×256×...原创 2012-08-19 09:44:46 · 6167 阅读 · 0 评论