短文本相似度计算-simHash从原理到实现

1、simHash简介

simHash算法是GoogleMoses Charikear于2007年发布的一篇论文《Detecting Near-duplicates for web crawling》中提出的, 专门用来解决亿万级别的网页去重任务。

simHash是局部敏感哈希(locality sensitve hash)的一种,其主要思想是降维,将高维的特征向量映射成低维的特征向量,再通过比较两个特征向量的 汉明距离(Hamming Distance) 来确定文章之间的相似性。

什么是局部敏感呢?假设A,B具有一定的相似性,在hash之后,仍能保持这种相似性,就称之为局部敏感hash

汉明距离
Hamming Distance,又称汉明距离,在信息论中,等长的两个字符串之间的汉明距离就是两个字符串对应位置的不同字符的个数。即将一个字符串变换成另外一个字符串所需要替换的字符个数,可使用异或操作。
例如: 1011与1001之间的汉明距离是1。

2、simHash具体流程

simHash算法总共分为5个流程: 分词、has、加权、合并、降维。

  1. 分词
    对待处理文档进行中文分词,得到有效的特征及其权重。可以使用TF-IDF方法获取一篇文章权重最高的前topK个词(feature)和权重(weight)。即可使用jieba.analyse.extract_tags()来实现
  2. hash
    对获取的词(feature),进行普通的哈希操作,计算hash值,这样就得到一个长度为n位的二进制,得到(hash:weight)的集合。
  3. 加权
    在获取的hash值的基础上,根据对应的weight值进行加权,即W=hash*weight。即hash为1则和weight正相乘,为0则和weight负相乘。例如一个词经过hash后得到(010111:5)经过步骤(3)之后可以得到列表[-5,5,-5,5,5,5]。
  4. 合并
    将上述得到的各个向量的加权结果进行求和,变成只有一个序列串。如[-5,5,-5,5,5,5]、[-3,-3,-3,3,-3,3]、[1,-1,-1,1,1,1]进行列向累加得到[-7,1,-9,9,3,9],这样,我们对一个文档得到,一个长度为64的列表。
  5. 降维
    对于得到的n-bit签名的累加结果的每个值进行判断,大于0则置为1, 否则置为0,从而得到该语句的simhash值。例如,[-7,1,-9,9,3,9]得到 010111,这样,我们就得到一个文档的 simhash值。
    最后根据不同语句的simhash值的汉明距离来判断相似度。

<mark style="box-sizing: border-box; outline: 0px; background-color: rgb(248, 248, 64); color: rgb(0, 0, 0); overflow-wrap: break-word;">根据经验值,对64位的 SimHash值,海明距离在3以内的可认为相似度比较高。</mark>

simhash实现流程

3、Python实现simHash

使用Python实现simHash算法,具体如下:

# -*- coding:utf-8 -*-
import jieba
import jieba.analyse
import numpy as np

class SimHash(object):
    def simHash(self, content):
        seg = jieba.cut(content)
        # jieba.analyse.set_stop_words('stopword.txt')
        # jieba基于TF-IDF提取关键词
        keyWords = jieba.analyse.extract_tags("|".join(seg), topK=10, withWeight=True)

        keyList = []
        for feature, weight in keyWords:
            print('weight: {}'.format(weight))
            # weight = math.ceil(weight)
            weight = int(weight)
            binstr = self.string_hash(feature)
            temp=[]
            for c in binstr:
                if (c == '1'):
                    temp.append(weight)
                else:
                    temp.append(-weight)
            keyList.append(temp)
        listSum = np.sum(np.array(keyList), axis = 0)
        if (keyList == []):
            return '00'
        simhash = ''
        for i in listSum:
            if (i>0):
                simhash = simhash + '1'
            else:
                simhash = simhash + '0'

        return simhash

    def string_hash(self, source):
        if source == "":
            return 0
        else:
            x = ord(source[0]) << 7
            m = 1000003
            mask = 2**128 - 1
            for c in source:
                x = ((x*m)^ord(c)) & mask
            x ^= len(source)
            if x == -1:
                x = -2
            x = bin(x).replace('0b', '').zfill(64)[-64:]
            # print('strint_hash: %s, %s'%(source, x))

            return str(x)

    def getDistance(self, hashstr1, hashstr2):
        '''
            计算两个simhash的汉明距离
        '''
        length = 0
        for index, char in enumerate(hashstr1):
            if char == hashstr2[index]:
                continue
            else:
                length += 1

        return length

if __name__ == '__main__':
    simhash = SimHash()
    s1 = simhash.simHash('我想洗照片')
    s2 = simhash.simHash('可以洗一张照片吗')

    dis = simhash.getDistance(s1, s2)

    print('dis: {}'.format(dis))

simHash适用于对于短小的文本的相似度计算,较长的文本更适合计算词向量的相似度。

  • 1
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Spark可以使用余弦相似度计算文本相似度。余弦相似度是一种度量两个非零向量之间的夹角的方法,它的取值范围在-1到1之间,值越接近1表示两个向量越相似,值越接近-1表示两个向量越不相似。 下面是一个使用Spark计算文本相似度的示例代码: ```python from pyspark.ml.feature import HashingTF, IDF, Tokenizer from pyspark.ml.feature import VectorAssembler from pyspark.ml.linalg import DenseVector # 创建SparkSession spark = SparkSession.builder.appName("Short Text Similarity").getOrCreate() # 加载数据集,数据集格式为id,text1,text2 data = spark.read.csv("data.csv", header=True) # 分词 tokenizer = Tokenizer(inputCol="text", outputCol="words") data = tokenizer.transform(data) # 计算TF-IDF值 hashingTF = HashingTF(inputCol="words", outputCol="rawFeatures", numFeatures=100) idf = IDF(inputCol="rawFeatures", outputCol="features") idfModel = idf.fit(hashingTF.transform(data)) data = idfModel.transform(hashingTF.transform(data)) # 合并特征向量 assembler = VectorAssembler(inputCols=["features1", "features2"], outputCol="features") data = assembler.transform(data) # 计算余弦相似度 dot_udf = udf(lambda x, y: float(x.dot(y)), DoubleType()) similarity = data.withColumn("similarity", dot_udf(col("features1"), col("features2"))) ``` 这个示例代码中使用了HashingTF和IDF来计算TF-IDF值,然后使用VectorAssembler将两个特征向量合并为一个,最后使用udf计算余弦相似度。这个示例中使用的数据集格式为id,text1,text2,你需要根据实际情况修改代码。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值