自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(14)
  • 收藏
  • 关注

原创 django postgres 异常--server closed the connection unexpectedly

本次引入导致了一个现象,就是该定时任务在白天有数据不断运行时是正常执行的,但是过了很长一段时间后(现场为隔夜之后第二天)在运行该任务,则会出现server closed the connection unexpectedly的异常。正常的数据库连接不上,在排除了一些配置和网络问题之后,一般都是连接被服务端关闭了,但是客户端在某次还是使用了这个连接导致的这个问题。在检查了配置后,我们发现django是没有默认的连接池的,需要自己去使用第三方包去建立并管理数据库连接池。

2024-08-26 09:20:49 221

原创 Django执行原生sql

Django的filter只能执行单表的操作,无法执行关联查询。这时我们需要用到raw()这个函数。user_name = '%张%'2. 通过raw执行查询。1. 定义查询sql。

2024-08-02 16:56:22 133 1

原创 【适用于企业的生成式 AI 用例】

转载z15 个适用于企业的生成式 AI 用例-CSDN博客关于及其能做什么(和不能做什么)有很多讨论。生成式人工智能(例如大型语言模型 -)利用从大量训练数据中学习到的模式和结构来创建原创内容,而无需存储数据本身。这包括创建文本、软件代码和艺术等。虽然它可以创建内容,但它不会很快。尽管如此,它正在重塑全球行业的格局,从增强网络安全防御到个性化客户体验。事实上,99% 的受访组织表示,。让我们深入研究生成式人工智能如何通过协助使用它的人来释放新的可能性并改变日常业务运营。

2024-07-03 11:50:23 1444

原创 通过BLEU得分评价LLM模型

在使用LLM模型处理任务时,经常需要判断模型的输出是否达到了业务的要求。这里就需要一个验证集以及一个自动验证的工具。对于生成式的模型BLEU是一个简单好用的评判方式。通过业务给定一批任务和任务处理的标准答案。设置一个完整的比对流程,对模型和prompt进行评判,并优化prompt,提升模型输出。

2024-06-06 16:30:29 174

原创 prompt分类优化

结合1.2和1.3的问题,我们分析得出结论无论是写一个prompt还是每个任务都设计一个prompt都不行。在这种情况下,我们考虑将任务做个分类,按不同的类型做不同的prompt设计。1.2.1 输出结果很笼统,无法做到对应每个任务的描述去输出,有些任务要求判断是否完成任务,有些需要统计,有些需要打分,有些需要输出结论。1.2.2 任务数量过多,业务也无法做到每个任务设计一个prompt。根据任务的描述和要求去判断提交的文档是否符合完成任务的要求。分类处理任务,使用这样的方式来提升模型的输出。

2024-06-04 17:26:24 274

原创 tika解析文本

需要对文章进行内容提取或者分段展示,以及下游的LLM处理。这里就涉及到将上传的文档进行文本内容提取。在现有的开源工具中,我们选中了tika,主要优势是版本的更新,解析的全面性,使用的便捷性。一种方法可以根据上面转换好的html,利用jSoup提取。a) 将文档内容提取为html,以供前端直接展示。第二种方法可以使用xhtml去提取,代码如下。c) 获取文档中内嵌文档的内容-官方样例。b) 根据固定标签获取对应的内容。

2024-05-29 10:07:30 669

原创 prompt优化实践

这里判断 优化3中的 不需要推理过程 起到了反向优化的作用。猜测 1.2.3中的推理内容和下面的内容分界不明显,导致1.2的内容没去掉。预期是得到一个明确的是否答案,并包含该答案的判断依据,尽量的简洁明了。回答有所精简、答案也能明确,但是输出格式依然不友好。这里回答比较符合我们的要求,但是多了1和2的内容。再prompt中调整顺序,并增加输出格式的要求。回答更简洁,但是1和2还是没有去掉。1.先写一个简单的prompt。这里的回答不台符合我们的预期。第二:格式不好,不利于阅读。这个结果比较符合我们的预期。

2024-05-22 16:14:15 173

原创 LLM+prompt,简化日常审核工作

利用大模型的语言处理能力,简化日常工作中的审核环节工作。

2024-05-22 15:15:04 731

原创 prompt在LLMs中的实际应用

在工作流的流转中,需要对下级单位上传的文档,进行节点任务自动完成判断。改造前的功能是某个审核节点,当被审核人上传文件后,由审核人员去人工审核文件是否满足审核要求;prompt=f"根据任务描述:{task_info},判断文章:{file_content}是否完成了任务"由于节点任务是由具体完成要求的,该要求也是以文件的形式下发给下级单位的。prompt=f"你的任务是判断下面的文章内容是否符合了对应的任务描述。请回答,```是```|```否```"任务描述:{task_info}

2024-05-21 14:31:09 272

原创 prompt官方优化方法

举例message=[{"role":"system", "content":"你是一个部门领导,你需要对下级公司的任务完成打分和考评"},{"role":"user", "content":"请根据下面任务要求 \n ```{rules}``` \n 完成对以下任务的评分 \n ```{task_info}```"}从这个例子中,可以发现在没有role:system的输入时,模型给出的回答比较松散,在评分上面做的不是很好。

2024-05-17 16:29:17 216

原创 spring项目

openfeign+eureka-client+eureka-server---一般搭配起来使用,主要是用来集群之前的请求调用。spring-restdocs-mockmvc---通过springtest来生成api文档。springboot-quartz---spring整合quartz定时任务。springboot-web---用来开发web应用。springboot-test---用来做测试。springboot-mail---邮件相关。lombok---注释生成代码。,根据配置生成初始的项目结构。

2024-05-16 10:42:26 210

原创 prompt工程样例

prompt=f'```{taskinof}```请根据上面的任务定义和任务名称抽取出一个问题,如果任务是数值相关的则去提问数值相关问题,如果是非数值相关的则去提问是否判断类问题。prompt=f'```{taskinof}```请根据上面的任务定义和任务名称抽取出一个问题,如果任务是数值相关的则去提问数值相关问题,如果是非数值否相关的则去提问是否判断类问题'分析2.1中的问题,该任务明显是一个统计数量类的问题,应该回复"有多少"、"统计xxx的数量"等,但是返回回答是给出了一个是否类的判断问题。

2024-05-15 16:14:58 375

原创 LLM模型的应用方向

1.摘要提取--模型能进行一定程度的汇总提取,形成自己的理解并输出一段完整逻辑的内容。1.NLP问题处理--摘要、关键词、短语、同义词、文本分类(情绪分类、新闻分类等)c) 给出一些源数据或者文件,输入处理要求或者步骤,让模型建议一个简单的对话机器人。2.关键词提取--提取文章中的关键词,这里可以结合传统的方法去实现,保证输出完整。4.文本校验--通过模型对文章的内容进行检查,输出异常的地方。5.翻译--通过模型对文字进行语言转换,中英互译。6.文字扩展--通过模型对一段文字进行扩展。

2024-05-13 11:01:51 153

原创 LLM提示词相关问题整理

主要通过答案关联源文档的内容,通过提示词让模型指出回答对应源文档中那些内容来进行真伪判断。这里我的理解就是在提示词中设计一些异常场景的处理,以便模型的返回能格式化,标准化。这样便于将模型的输出直接对接应用程序,注意对于返回的json可能需要自己再去进行一定的处理。给出完整的任务处理步骤,让模型按图索骥,这里和4不一样。prompt="提取文章中的人名,如果没有出现任何人名则返回```无```"举例后再去提问,这样能给模型一个参考,并给模型“思考”的时间。你的任务是总结上面的新闻,提取不超过10个字的摘要。

2024-05-13 10:37:05 256

大语言模型介绍(LLM概述)

介绍现阶段大语言模型的市场情况,以及模型的主要功能和对应的业务使用场景。 只做简单介绍并举例来说明,不做技术上的探讨

2024-05-30

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除