2025长三角赛题B国奖大佬万字思路助攻

完整版万字论文思路和千行Python代码下载:https://www.jdmm.cc/file/2712099/

整体思路

核心目标是预测未来4小时的供回水设定温度,以在保证室内舒适度(20±1℃)的前提下,最小化能耗成本。这需要我们理解建筑的热力学特性、热泵的运行特性以及外部环境因素的影响。

数据预处理阶段 (共通):

  1. 数据加载与清洗

    • 加载所有CSV数据文件(供热历史数据和各个建筑的多个室内测点数据)。

    • 处理缺失值:可采用均值/中位数填充、插值法或基于时间序列的预测填充。

    • 处理异常值:根据业务逻辑或统计方法(如3-sigma原则)识别并处理。

    • 时间对齐:确保所有数据(室外温度、供回水温度、设定温度、室内温度)在时间上对齐,可能需要进行重采样(例如,统一到小时级别)。

  2. 室内温度整合

    • 根据“附件1 数据说明” [cite: 5],对于每个建筑,在同一时间段内,对所有测点温度取平均值,作为该建筑的统一室内温度。

  3. 特征工程

    • 创建时间相关特征:小时、星期几、是否周末、月份等。

    • 创建滞后特征:过去的室内温度、室外温度、供回水温度、设定温度等,这些对于时间序列预测非常重要。

    • 创建温差特征:室内外温差、供回水温差等。

    • 考虑引入天气预报数据(如果允许外部数据且能获取),如未来几小时的室外温度预测值。题目本身是预测4小时后的温度,所以当前已知的未来4小时天气预报(如果可得)会很有用。

问题解析与建模思路

问题1:数据统计分析

目标:分析室内温度波动规律、室内外温度相关性、热泵能耗与温差的定量关系以及影响室内温度的因素。

建模思路与代码逻辑

  1. 室内温度波动规律分析

    • 思路:对每个建筑处理后的平均室内温度数据进行描述性统计分析和可视化。

    • 代码逻辑

      • 计算基本统计量:均值、中位数、标准差、最大值、最小值、四分位数等。

      • 绘制时间序列图:观察温度随时间的变化趋势、周期性(日周期、周周期)。

      • 绘制箱线图或小提琴图:按小时、按天、按月等展示温度分布和波动情况。

      • 进行傅里叶变换或自相关函数(ACF)、偏自相关函数(PACF)分析:识别潜在的周期性。

  2. 室内外温度相关性曲线

    • 思路:计算室内平均温度与室外温度的相关系数,并绘制散点图和拟合曲线。

    • 代码逻辑

      • 准备对应时间点的室内平均温度和室外温度数据。

      • 计算皮尔逊相关系数。

      • 绘制散点图,横轴为室外温度,纵轴为室内温度。

      • 可以尝试进行线性或非线性回归拟合(如多项式回归、LOESS平滑)来展示趋势。

  3. 热泵能耗与温差的定量关系分析

    • 思路:热泵能耗通常与供回水温度以及室内外温差有关。题目中直接给出了“热泵功率”变量(虽然在问题描述中提及,但数据说明未明确列出,需在附件数据中确认是否存在,如果不存在,可能需要根据供回水温度和流量估算热功率,或简化为与供回水温度的关系)。如果“热泵功率”数据可用,可以直接分析。

    • 能耗代理:如果直接的功率数据不完整或缺失,可以近似认为供水温度越高,能耗越大。

    • 代码逻辑

      • 如果“热泵功率”数据存在

        • 计算室内外温差 (\Delta T_{io} = T_{in} - T_{out}) 或供暖目标温差 (\Delta T_{set} = T_{supply\_set} - T_{out})。

        • 绘制热泵功率与 \Delta T_{io} 或供回水温度的散点图。

        • 进行回归分析(线性回归、多项式回归)建立定量关系,例如:P = a \cdot \Delta T + b 或 P = f(T_{supply}, T_{return}, T_{out})。

      • 如果“热泵功率”数据不存在

        • 分析供水温度/回水温度与室内外温差的关系。比如,在不同室外温度下,要维持特定室内温度,需要的供水温度是多少。

        • 可以间接说明:维持较大室内外温差需要较高的供水温度,从而意味着较高的能耗。

  4. 影响室内温度的影响因素分析

    • 思路:这是一个多变量问题。可以采用统计分析或机器学习特征重要性排序的方法。

    • 代码逻辑

      • 候选因素:室外温度、前N小时的室内温度、供水温度、回水温度、设定温度、时间特征(小时、是否工作日等)、建筑类型(通过比较两个地点的差异间接体现)。

      • 方法1:相关性分析:计算各因素与室内温度的相关系数矩阵,并可视化(如热力图)。

      • 方法2:多元线性回归:建立室内温度与各因素的线性回归模型 T_{in} = \beta_0 + \sum \beta_i X_i + \epsilon,分析各回归系数 \beta_i 的显著性和大小。

      • 方法3:机器学习模型特征重要性:训练一个预测室内温度的模型(如随机森林、梯度提升树),然后提取特征重要性排序。

问题2:建筑热力学模型

目标:建立建筑热力学模型,描述室内温度变化过程,辨识参数并分析模型性能。

建模思路与代码逻辑

  1. 模型选择

    • 集总参数模型(Lumped Parameter Model):将整个建筑或一个区域视为一个或少数几个热容节点。常用的是一阶或二阶RC模型(电阻-电容模型)。

    • 一阶模型(1R1C):一个简化的模型,假设建筑是一个单一的热容体。 C \frac{dT_{in}}{dt} = U_A (T_{out} - T_{in}) + \Phi_{hvac} + \Phi_{internal} + \Phi_{solar} 其中:

      • C:建筑等效热容 (J/K)

      • T_{in}:室内温度 (K 或 °C)

      • T_{out}:室外温度 (K 或 °C)

      • U_A:建筑等效总传热系数 (W/K),U是传热系数,A是外表面积。有时也写作 1/R_{total},其中 R_{total} 是总等效热阻。

      • \Phi_{hvac}:暖通空调系统提供的热量 (W)。这部分与热泵的供回水温度、流量有关。可简化为与供水温度和室内温度差成正比,或直接使用热泵功率(如果已知)。例如, \Phi_{hvac} = \eta \cdot P_{pump} 或 \Phi_{hvac} = k_{hvac} (T_{supply} - T_{in})。

      • \Phi_{internal}:内部得热,如人员、设备散热(题目未给,初期可忽略或设为常数)。

      • \Phi_{solar}:太阳辐射得热(题目未给,初期可忽略或通过室外温度间接考虑)。

  2. 参数辨识

    • 目标:估计模型中的未知参数,主要是 C 和 U_A (或 R_{total}),以及 \Phi_{hvac} 中的相关系数。

    • 方法

      • 离散化模型:将微分方程离散化。例如,用欧拉法: T_{in}(t+1) = T_{in}(t) + \frac{\Delta t}{C} [U_A (T_{out}(t) - T_{in}(t)) + \Phi_{hvac}(t)] 整理后可得一个线性回归形式或非线性最小二乘问题。 T_{in}(t+1) = (1 - \frac{\Delta t \cdot U_A}{C}) T_{in}(t) + \frac{\Delta t \cdot U_A}{C} T_{out}(t) + \frac{\Delta t}{C} \Phi_{hvac}(t) 令 A = (1 - \frac{\Delta t \cdot U_A}{C}), B = \frac{\Delta t \cdot U_A}{C}, D = \frac{\Delta t}{C}。 则 T_{in}(t+1) = A \cdot T_{in}(t) + B \cdot T_{out}(t) + D \cdot \Phi_{hvac}(t)。 可以使用历史数据通过最小二乘法估计参数A, B, D,然后反解出 C, U_A。

      • 优化算法:定义一个目标函数,如预测室内温度与实际室内温度的均方误差(MSE)最小: J = \sum (T_{in,pred}(t) - T_{in,actual}(t))^2 使用优化算法(如梯度下降、Levenberg-Marquardt、遗传算法、粒子群算法等)来寻找最优参数 C, U_A。

    • 代码逻辑

      • 准备时间序列数据:T_{in}(t), T_{out}(t), \Phi_{hvac}(t) (可能需要根据供水温度、回水温度、设定温度等计算或估计)。

      • 实现离散化模型方程。

      • 使用scipy.optimize.curve_fit (非线性最小二乘) 或 scipy.optimize.minimize (通用优化) 进行参数估计。

      • 对两栋建筑分别进行参数辨识,因为它们的保温性能不同。

  3. 模型性能分析

    • 指标:均方根误差 (RMSE)、平均绝对误差 (MAE)、决定系数 (R^2)。

    • 方法

      • 使用一部分数据进行参数辨识(训练集),另一部分数据进行验证(测试集)。

      • 绘制预测室内温度与实际室内温度的对比曲线。

      • 分析残差的分布。

    • 代码逻辑

      • 用辨识出的参数和测试集数据,预测室内温度。

      • 计算上述性能指标。

      • 可视化预测结果与实际值的对比。

问题3:未来4小时室内温度预测模型

目标:建立一个数据驱动的模型预测未来4小时的室内温度,并与问题2的热力学模型比较。

建模思路与代码逻辑

  1. 模型选择(数据驱动)

    • 时间序列模型:ARIMA, SARIMA, VAR (向量自回归,如果预测多个相关变量)。

      • 优点:能很好地捕捉时间序列的自相关性和趋势性、季节性。

      • 缺点:对于长时预测(4小时可能不算太长,但仍需注意)和复杂非线性关系可能不够灵活。

    • 机器学习回归模型

      • 线性回归 (带有滞后项)

      • 支持向量回归 (SVR)

      • 决策树回归、随机森林回归、梯度提升回归 (XGBoost, LightGBM, CatBoost)

      • 神经网络 (如MLP, RNN, LSTM, GRU):特别适合处理序列数据。

      • 优点:能处理复杂的非线性关系,可以方便地引入多种特征。

      • 缺点:可能需要更多数据,模型解释性有时较差。

  2. 特征工程 (针对机器学习模型)

    • T_{in}(t), T_{in}(t-1), ..., T_{in}(t-k):过去k小时的室内温度。

    • T_{out}(t), T_{out}(t-1), ..., T_{out}(t-k):过去k小时的室外温度。

    • T_{supply}(t), T_{return}(t), T_{set}(t) 等热泵运行参数的当前值和过去值。

    • 未来已知的室外温度预报(如果允许并可获取,对于预测t+1到t+4时刻会很有用)。题目中提到“基于当前时刻的已知信息”,这意味着未来4小时的室外温度可能是未知的,需要依赖历史模式或假设。但如果能获取未来4小时的天气预报,应作为重要输入。

    • 时间特征:一天中的小时,一周中的天,月份等(进行独热编码或周期性编码)。

    • 交互特征:例如室外温度与一天中小时的交互。

  3. 模型训练与预测

    • 目标变量:T_{in}(t+4)。

    • 训练:使用历史数据训练所选模型。

    • 预测

      • 直接预测:训练一个模型直接输出 T_{in}(t+4)。

      • 迭代预测 (对于某些模型如ARIMA或RNN):先预测 T_{in}(t+1),然后用 T_{in}(t+1) 的预测值作为输入来预测 T_{in}(t+2),依此类推,直到 T_{in}(t+4)。这种方法误差会累积。

      • 对于机器学习模型,通常是直接预测 T_{in}(t+4),即将滞后特征设置为相对于 t 时刻的值,预测目标为 t+4 时刻的室内温度。

    • 代码逻辑

      • 数据划分:训练集、验证集、测试集。

      • 特征缩放:对于SVR, NN等模型是必要的。

      • 模型选择与超参数调优:使用网格搜索、随机搜索或贝叶斯优化等方法,在验证集上选择最佳模型和参数。

      • 使用statsmodels库实现ARIMA/SARIMA。

      • 使用scikit-learn库实现各种机器学习回归模型。

      • 使用TensorFlow/KerasPyTorch实现神经网络模型。

  4. 与问题2模型比较

    • 比较维度

      • 预测精度:RMSE, MAE, R^2 在相同测试集上的表现。

      • 模型复杂度与可解释性:物理模型参数有明确物理意义,易于理解;机器学习模型可能是黑箱。

      • 数据需求:物理模型对数据量的需求可能相对较少,但对物理过程的理解要求高;机器学习模型通常需要更多数据。

      • 鲁棒性:在不同工况或建筑类型下的表现。

      • 计算成本:训练和预测所需时间。

    • 代码逻辑

      • 确保两个模型在相同的测试数据和评价标准下进行评估。

      • 汇总比较结果表格,并进行可视化对比。

  5. 特定时刻预测

    • 加载对应地点的数据,确保数据预处理和特征工程与训练时一致。

    • 找到2025年03月15日11时(对于地点1)和2025年03月16日00时(对于地点2)之前的相关数据作为模型输入。

    • 预测t+1, t+2, t+3, t+4时刻的室内温度。题目要求的是“基于当前时刻的已知信息,预测t+4时刻的室内温度”,所以是单点预测。

      • 地点1, 2025年03月15日,基于07:00的信息预测11:00的温度;基于08:00的信息预测12:00的温度;基于09:00的信息预测13:00的温度;基于10:00的信息预测14:00的温度。

      • 地点2, 2025年03月16日,基于前一天20:00的信息预测00:00的温度;基于前一天21:00的信息预测01:00的温度;以此类推。

问题4:恒温与分时控温策略优化

目标:设计控制策略,以最小化电费为目标,在满足舒适性约束下,优化供回水温度设定。

建模思路与代码逻辑

  1. 能耗模型与电费计算

    • 能耗模型:需要建立热泵能耗(功率 P_{pump})与供回水温度 (T_{supply}, T_{return})、室外温度 (T_{out})、室内温度 (T_{in}) 等的关系。

      • 可以参考热泵的COP (Coefficient of Performance) 理论: COP = \frac{Q_{out}}{W_{in}},其中 Q_{out} 是制热量, W_{in} 是输入功(电耗)。COP通常与蒸发温度(与室外温度相关)和冷凝温度(与供水温度相关)有关。

      • 一个简化的模型可以是:P_{pump} = f(T_{supply}, T_{out}),其中 f 是一个递增函数,供水温度越高、室外温度越低,则能耗越高。可以从问题1的分析中获得此关系,或者查找文献建立经验公式。

    • 电费计算

      • 峰谷电价:日间 (06:00-22:00) 1.2元/度,夜间 (22:00-06:00) 0.6元/度 [cite: 7]。

      • 总电费 = \sum (P_{pump}(t) \cdot \Delta t \cdot price(t))

  2. 优化模型框架

    • 决策变量:未来N个时段(例如,每小时一个设定,持续24小时或更长的一个控制周期)的供水温度设定值 T_{supply\_set}(t) (或回水温度,根据题目说明“可能会设置供水或回水温度” [cite: 1])。

    • 目标函数:最小化总电费。 \min \sum_{t=1}^{N} P_{pump}(T_{supply\_set}(t), T_{out}(t), ...) \cdot \Delta t \cdot price(t)

    • 约束条件

      • 室内温度约束:使用问题2或问题3的室内温度预测模型,确保在每个时刻 t,预测的室内温度 T_{in}(t) 维持在舒适区间内。

        • 恒温策略:T_{in}(t) = 20 \pm \epsilon (例如,\epsilon很小,接近20°C)。题目说明中是20±1℃ [cite: 6]。

        • 分时控温策略:19°C \le T_{in}(t) \le 21°C。夜间可以有不同的目标,比如允许稍微降低下限或利用低电价时段将温度升至21°C,以便在白天高电价时段利用热惰性。

      • 供回水温度操作约束:T_{supply,min} \le T_{supply\_set}(t) \le T_{supply,max}。

      • 供回水温度变化速率约束(可选):|T_{supply\_set}(t) - T_{supply\_set}(t-1)| \le \Delta T_{max}。

      • 热泵启停约束(如果考虑)。

  3. (1) 恒温控制策略 (室温始终保持在20℃)

    • 思路:目标是严格维持室内温度在20℃。这可能意味着需要频繁调整供水温度,且不一定是最节能的。

    • 控制方法

      • PID控制器:设定目标室温为20℃,根据预测的室温与目标室温的偏差,通过PID算法调整供水温度。PID参数需要整定。

      • 基于模型的预测控制 (MPC):在每个控制步长,求解一个优化问题,找到未来M步的供水温度设定序列,使得未来P步的室内温度最接近20℃,同时考虑能耗。但题目这里更像是设计一个“设定值”,而不是动态控制回路。如果理解为优化供水温度设定,使得未来4小时能达到20℃:

        • 对于给定的当前状态和未来4小时的室外温度预测(如果可用),求解能使 T_{in}(t+4) = 20°C 的 T_{supply\_set}(t)。

    • 分析

      • 温度控制效果:看室温是否能稳定在20℃附近。

      • 能耗和电费:计算此策略下的能耗和电费。

  4. (2) 分时控温策略 (最小化电费)

    • 思路:利用峰谷电价,在电价低谷时段(夜间)适当提高供水温度,将热量储存在建筑物中(提高室内温度至舒适区上限如21℃),在电价高峰时段(白天)降低供水温度,依靠建筑热惰性维持室温在舒适区内(如下限19℃)。

    • 优化算法

      • 动态规划 (DP):如果状态空间和决策空间可以离散化且问题具有最优子结构。

      • 非线性规划 (NLP):如果能耗模型和温度预测模型是连续可微的,可以使用NLP求解器(如IPOPT, SNOPT)。

      • 启发式优化算法:遗传算法 (GA)、粒子群优化 (PSO)、模拟退火 (SA) 等。这些算法对模型形式要求不高,但可能找不到全局最优解。

      • 模型预测控制 (MPC):这是一个非常适合此类问题的框架。在每个决策时刻,基于当前系统状态和未来扰动(如室外温度)的预测,求解一个有限时域的开环优化问题,得到一系列控制输入(供水温度设定),但只执行第一个控制输入。然后系统进入下一状态,重复此过程。

    • 具体温度控制方法:优化模型会直接给出一系列 T_{supply\_set}(t)。

    • 分析

      • 温度控制效果:绘制室内温度变化曲线,检查是否始终在19-21℃范围内。

      • 能耗和电费:计算并与恒温策略、基线策略(如题目中提到的原24小时预测策略)进行比较。

      • 绘制优化前后的能耗、电费对比图。

    • 代码逻辑 (以MPC为例)

      • 定义状态变量 (如当前室内温度)。

      • 定义控制变量 (未来N步的供水温度设定)。

      • 使用问题2或3的预测模型作为MPC的内部预测模型。

      • 定义目标函数(最小化未来N步的总电费)。

      • 定义约束(室内温度范围、供水温度范围等)。

      • 使用 scipy.optimize.minimize 或专门的MPC库(如 GEKKO, do-mpc)求解每一步的优化问题。

      • 模拟整个控制过程,记录温度、能耗、电费。

代码实现提示

  • 编程语言:Python (配合 Pandas, NumPy, SciPy, Statsmodels, Scikit-learn, Matplotlib/Seaborn)。

  • 模块化:将数据预处理、各个问题模型、评估函数等功能模块化,方便调用和维护。

  • 可视化:充分利用可视化图表展示分析结果、模型性能和控制效果,如题目要求。

  • 区分建筑类型:对两个地点(建筑)分别进行建模和参数辨识,因为它们的特性不同。

请注意,上述思路提供了一个框架。在实际建模过程中,可能需要根据数据探索的结果和模型验证的反馈进行调整和细化。例如,\Phi_{hvac} 的具体形式,是否考虑太阳辐射和内部得热等,都需要根据实际情况和数据可得性来决定。

在开始编码前,建议先仔细检查提供的数据文件(那几个CSV文件),了解其具体的列名、数据格式和时间范围,这将直接影响数据预处理和特征工程的细节。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值