hdu6069Counting Divisors(约数个数定理)

题意:

给你l,r,k三个整数,求区间[l,r]内每个数 的k次方的因子总数。

思路:

枚举根号r内的质数,求出每个质数在区间内贡献值,利用约数个数定理求因子总数,注意处理区间内大于根号r的质数。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>

using namespace std;
typedef long long LL;
const int mod = 998244353;
const int maxn = 1000000+10;

LL prime[maxn],sum[maxn],num[maxn];
int cnt = 0;
void getPrime()
{
    memset(prime,0,sizeof(prime));
    for(int i = 2;i<maxn;i++)
    {
        if(!prime[i])
        {
            prime[cnt++] = i;
            for(int j = i*2;j<maxn;j+=i)
                prime[j] = 1;
        }
    }

}

int main()
{
    int t;
    scanf("%d",&t);
    getPrime();
    while(t--)
    {
        LL l,r,k;
        scanf("%lld%lld%lld",&l,&r,&k);
        for(LL i = l;i<=r;i++)
            num[i-l] = i,sum[i-l] = 1;
        for(int i = 0;i<cnt;i++)
        {
            LL flag = l%prime[i];
            LL fir;
            if(!flag)
            {
                fir = l;
            }
            else
            {
                fir = l-flag+prime[i];
            }
            for(LL j = fir;j<=r;j+=prime[i])
            {
                int ti = 0;
                while(num[j-l]%prime[i]==0) ti++,num[j-l]/=prime[i];
                sum[j-l] *= k*ti+1;
                sum[j-l] %= mod;
            }
        }
        LL ans = 0;
        for(LL i = l;i<=r;i++)
        {
            if(num[i-l]!=1)
                sum[i-l] = sum[i-l]*(k+1)%mod;
            ans += sum[i-l];
            ans %= mod;
        }
        printf("%lld\n",ans);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值