题意:
给你l,r,k三个整数,求区间[l,r]内每个数 的k次方的因子总数。
思路:
枚举根号r内的质数,求出每个质数在区间内贡献值,利用约数个数定理求因子总数,注意处理区间内大于根号r的质数。
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long LL;
const int mod = 998244353;
const int maxn = 1000000+10;
LL prime[maxn],sum[maxn],num[maxn];
int cnt = 0;
void getPrime()
{
memset(prime,0,sizeof(prime));
for(int i = 2;i<maxn;i++)
{
if(!prime[i])
{
prime[cnt++] = i;
for(int j = i*2;j<maxn;j+=i)
prime[j] = 1;
}
}
}
int main()
{
int t;
scanf("%d",&t);
getPrime();
while(t--)
{
LL l,r,k;
scanf("%lld%lld%lld",&l,&r,&k);
for(LL i = l;i<=r;i++)
num[i-l] = i,sum[i-l] = 1;
for(int i = 0;i<cnt;i++)
{
LL flag = l%prime[i];
LL fir;
if(!flag)
{
fir = l;
}
else
{
fir = l-flag+prime[i];
}
for(LL j = fir;j<=r;j+=prime[i])
{
int ti = 0;
while(num[j-l]%prime[i]==0) ti++,num[j-l]/=prime[i];
sum[j-l] *= k*ti+1;
sum[j-l] %= mod;
}
}
LL ans = 0;
for(LL i = l;i<=r;i++)
{
if(num[i-l]!=1)
sum[i-l] = sum[i-l]*(k+1)%mod;
ans += sum[i-l];
ans %= mod;
}
printf("%lld\n",ans);
}
return 0;
}