题意:
有一个长度为n的整数序列{an},对其做m次前缀异或和,求最终的序列。
思路:
看了别人的题解。发现第i次变化后,a[1]对b[j]的贡献其实是个杨辉三角。贡献次数是C(i+j-2,j-1)(在三角上推一下),然后根据lucas定理(n&m==m?奇:偶)来判断C(n,m)的奇偶性。
然后又发现a[2]对b[j]的贡献其实就是a[1]的杨辉三角往右挪了一格,所以知道了a[1]对b的贡献,后面的a[2],a[3]···对b的贡献就都知道了
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn = 200000+7;
int a[maxn],b[maxn];
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int n,m;
scanf("%d%d",&n,&m);
for(int i = 1;i<=n;i++)
scanf("%d",&a[i]);
memset(b,0,sizeof(b));
for(int i = 1;i<=n;i++)
{
int nn = m+i-2,mm = i-1;
if((nn&mm)==mm)
{
for(int j = 1;j<=n-i+1;j++)
b[j+i-1] ^= a[j];
}
}
for(int i = 1;i<n;i++)
printf("%d ",b[i]);
printf("%d\n",b[n]);
}
return 0;
}