人工智能
文章平均质量分 96
CExploer
智慧、创造、奇迹
展开
-
reconsstruction3Dface,实现从2D图像重建3D人脸
重建3D人脸来自于论文 Y. Deng, J. Yang, S. Xu, D. Chen, Y. Jia, and X. Tong, Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set, IEEE Computer Vision and Pattern Recognition Workshop (CVPRW) on Analysis and Modeling of原创 2021-01-14 20:44:56 · 3216 阅读 · 1 评论 -
带你利用mask R-CNN进行实例分割的目标检测
今天,带大家了解一种目标检测,语义分割,什么是语义分割呢,这里我简单地说明一下,语义分割是目标检测,一般我们看到的目标检测用一个矩形的方框给围起来,而语义分割就是能在目标下将其轮廓给勾画起来,我们可以对比一下:如下图,这张就是一般的目标检测。如下图,这个就是语义分割,将一张图轮廓都标注好的:那么我将手把手带你走进这个项目的实战中,我将以带大家安装环境,测试图片,标注训练集以及训...原创 2018-08-17 14:52:24 · 6884 阅读 · 15 评论 -
实力分割模型的复现:Windows下的DeepLabv2 tensorflow模型:tensorflow-deeplab-resnet的复现
此博客为博主在复现模型时的记录,好处是问题比较全面,缺点是语言表述可能不够清晰。最近需要用到实力分割模型,之前介于mask rcnn的运行速度过慢,所以这次为了练手,选择了这个实力分割的模型。地址:https://github.com/DrSleep/tensorflow-deeplab-resnet#after-training-i-have-multiple-files-tha...原创 2018-12-20 13:31:32 · 2175 阅读 · 18 评论 -
tensorflow复现googlenet_v1,非高度集成模块
本次使用tensorflow的tf.nn函数,在尽可能少地定义函数的情况下复现googlenet-v1这里demo在每一个inception是堆叠卷积后的结果,使用tf.concat函数可以。这里官方手册上给的通道在前,需要连接的多维矩阵在后,但是高版本的tensorflow是反过来的。新版tensorflow:layer_4a = tf.concat([layer_4...原创 2019-03-29 18:04:31 · 498 阅读 · 1 评论 -
tensorflow使用较为底层的方式复现VGG16
一般在网络上看到一些专业人士写的demo,要么看不懂,要么封装特别好使可移植性减弱。为了巩固自己对经典网络的认识,我觉得用tensorflow以及tf.nn集成的库对经典网络进行复现,VGG作为最经典网络之一成为我的首要选择。这是论文中的结构示意图,绿框中的是最后的网络结构,论文中提及,每一个卷积后隐层后加上relu激活函数。每次步幅为1,卷积后大小不变。这里优化函数什么的我就按现...原创 2019-03-28 21:14:18 · 871 阅读 · 0 评论 -
tensorflow手动复现论文中的Resnet34结构(不借助keras和slim模块)
看了resnet的论文,然后手动用tf.nn模块搭建了resnet34。虽然比较累与笨,但是还是方便了我的理解。这里说说我的理解,残差网络主要是为了防止退化,因此会将特征跳动到下一个以防衰退。实线部分就是将前面的model与卷积后的model直接相加,形状不变的。而后面的虚线怎么理解呢?虚线是因为前面的model和后面的model不一样的shape。这里论文中说可以通过填充0来解决...原创 2019-04-15 11:23:17 · 2706 阅读 · 12 评论 -
Inception4的tensorflow实现,主要借助nn模块
实现inception4网络,这是googlenet与resnet结合的卷积神经网络。本文按照论文复现,论文中的InceptionA,InceptionB,InceptionC,以及reduction模块已写入函数,此次也将卷积函数简化,具体见demo:# -*- coding: utf-8 -*-"""Created on Fri May 31 2019@author: Ruoy...原创 2019-05-31 11:36:08 · 783 阅读 · 0 评论 -
Yolo v3目标检测模型代码使用
最近使用yolo作为目标检测的模型,此代码使用的是keras与python,在环境配置问题上会很方便。该文档主要是为了留给自己实验室的同学为了能快速使用深度学习的目标检测模型,主要讲究应用,而不是研究yolo的内部结构。我个人认为keras框架的确简单方便,但是也有很多的不方便,比如在此yolov3工程中我们就很难实现训练一部分同时保存模型,而tensorflow就可以很好地解决。如在运行...原创 2020-02-28 19:28:41 · 4311 阅读 · 8 评论