逆元的理解

11 篇文章 0 订阅
博客探讨了如何利用费马小定律计算模逆元,特别是在处理除法运算时的应用。通过示例代码展示了如何实现快速幂运算(ksm)来求解逆元,并指出在计算阶乘后除以特定数时的正确方法。强调了质数和不被质数整除的条件,以及在解决CF问题中的实际应用。
摘要由CSDN通过智能技术生成

逆元真的难懂
先记录一点此时的心得,日后再来修改

1.除以一个数等于乘这个数的逆元
费马小定律求逆元
证明如下:
费马小定律:假如p是质数,且gcd(a,p)=1,那么 a^(p-1)≡1(mod p)
由费马小定律我们可以想到是不是很像逆元的形式,即:
aa^(p-2)≡1(mod p)*
也就是说a^(p-2)是a的逆元。
即除以a等于乘上a^(p-2)
条件:p是质数,且a不能被p整除!!(费马小定律成立条件),复杂度O(log2§)

#include<bits/stdc++.h>
#define ll long long
using namespace std;
//前提条件 p是质数,a不能被p整除 
ll ksm(ll a, ll b) {
	ll ans = 1;
	while (b) {
		if (b & 1) {
			ans = ans * a;
			ans = ans % mod;
		}		
		b >>= 1;
		a = a * a;
		a = a % mod;
	}
	return ans;
}
int main(){
    ll a, p;
    while(~scanf("%lld%lld", &a, &p))
	{
		if(a%p==0) 
		printf("-1\n");
		else
        printf("%lld\n", ksm(a,p-2));
    }
}

cf有一题是kn的阶乘/(k+1),直接算会导致结果有误
用k
n的阶乘*ksm(k+1,mod-2)即可

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值