LRU算法的实现

LRU理解
LRU算法是页面置换算法的一种,英文为Least Recently Used。中文翻译叫最近最少使用。这个翻译太狗屁了,不好理解。不过可以看一下LRU算法数据的插入规则,就知道到底什么是LRU了。
依次插入4 7 0 7 1 0 1 2 1 2 6
在这里插入图片描述
看这个应该很容易理解,大概就是按时间顺序排队,时间最近的页面排在最前面,时间远的排在后面,最近的又重复的,提到最前面,超出就淘汰出内存。

LRU实现
数据插入的逻辑
在这里插入图片描述
因为在缓存页面时,需要保留页面名称和页面的内容,我们就假设,页面置换时每个页面有两个关键字段,页面名称和页面内容。
依据上面的假设,需要注意:
1>如果链表中不存在页面名称的数据,需要判断链表的容量,新增链表结点时,容量超出链表的容量,需要淘汰链表的尾结点数据。否则直接新增结点。
2>如果链表中粗在页面名称的数据,则可能页面名称的结点在链表中间,也可能在链表头部。为了思考简单,我们直接删除原来的结点,在链表头部新增结点。删除结点时,需要重新修改原来结点前后结点的关系。
3>新增节点时,需要修改头节点和新增结点,以及原来头结点的后续节点和新增结点的关系。

具体代码


import java.util.HashMap;

import java.util.Map;

/**
 * LRU算法
 * 基于Map和链表实现
 * @param <T>
 */
public class LRUCache2<T> {

    private int capacity;
    private Map<String, Node> data = new HashMap<>();
    private Node head;
    private Node tail;

    /**
     * 构造方法
     * @param capacity
     */
    public LRUCache2(int capacity) {
        this.capacity = capacity;
        head = new Node();
        tail = new Node();
        head.next = tail;
        tail.pre = head;
    }

    public <T> void add(String id, T value) {
        //存在元结点,则修改元结点关系
        Node<T> currentNode = data.get(id);
        //数据不存在
        if (currentNode == null) {
            //判断容量超出
            if (data.size() > capacity) {
                Node pre = tail.pre;
                tail = pre;
                data.remove(id);
            }
            //数据存在
        } else {
            Node<T> pre = currentNode.pre;
            Node<T> next = currentNode.next;
            if (pre != null) {
                pre.next = next;
            }
            if (next != null) {
                next.pre = pre;
            }
        }
        //插入链表首部
        currentNode = new Node(value);
        Node<T> next = head.next;
        head.next = currentNode;
        //修改链表前后结点
        currentNode.pre = head;
        currentNode.next = next;
        next.pre = currentNode;
        //
        data.put(id, currentNode);
    }

    /**
     * 调用页面时,重新修改队列
     * @param id
     * @return
     */
    public  T get(String id) {
        Node<T> n = data.get(id);
        if (n != null) {
            add(id, n.value);
            return n.value;
        }
        return null;
    }

    public void print() {
        Node data = head;
        while (data != null) {
            System.out.println(data.value);
            data = data.next;
        }
    }

    class Node<T> {
        Node pre;
        Node next;
        T value;
        public Node() {
        }
        public Node(T value) {
            this.value = value;
        }
    }

    public static void main(String[] args) {
        LRUCache2<Integer> cache = new LRUCache2(1024);
        cache.add("7", 7);
        cache.add("0", 0);
        cache.add("1", 1);
        cache.add("2", 2);
        cache.add("0", 0);
        cache.add("3", 3);
        cache.add("0", 0);
        cache.add("4", 4);

        cache.print();

        cache.get("0");
        System.out.println("----------------");
        cache.print();
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值