你认识我的时候(转)

[转载]你认识我的时候(转)

原文地址:你认识我的时候(转)
原文作者:量子人生
你认识我的时候,我已是待嫁的年龄,你没有见过我和男生成群结队去翻墙爬树的样子;
你认识我的时候,我已经蓄了很久的长发,你没有见过我剪成一层一层的短发,在食堂让大家目瞪口呆的样子;
你认识我的时候,我已经可以照顾自己,心情不好就做家务,手洗各种衣服,你不知道从前的我不会洗袜子,从没拖过地。
你认识我的时候,我知道替别人着想、习惯倾听,从不打断别人的说话,你没有经历过我武断专横、不听任何人解释、我行我素的岁月。
你认识我的时候,我脾气收敛,从不大声骂人,你不会知道原来的我生气时摔东西、撕纸条泄愤。
你认识我的时候,我理性、友好、克制、习惯微笑,你没有见过我情绪崩溃,哭到喘不过气,甚至没有见过我撒娇的样子。
你认识我的时候,我已经养成了良好的饮食习惯和运动习惯,你不知道从前的我喜欢吃油炸食品,不爱跑步,晚上十点半可以吃掉半盆排骨,把自己喂到130多斤。
你认识我的时候,我已经会画简单的妆,知道什么季节穿黑丝袜、什么季节穿打底裤,商场里给你介绍化妆品让你晕头转向,你无法想象上中学时的我,早晨只刷牙不洗脸不梳头还能在学校转一整天。
你认识我的时候,我已经知道怎么和陌生人打交道、怎么在酒桌上全身而退,你没有见过我说话脸红、被一瓶啤酒醉倒睡一晚的时候。
你认识我的时候,我已经是这个样子,是个符合或者不符合你想法的成品,你再也无法参与我的成长,不能看到我从不懂事到懂事,从不温柔到温柔。
所以,你认识的、喜欢的终究只是半个我。你不能理解我各种奇怪的忌讳,不能明白我对着一首老歌,一种场景发呆,无法理解我的坚持、放弃、隐忍、等待。同样,我认识你的时候,你穿带领子的衣服上班、不知道你穿球衣打球的样子;我认识你的时候,你请吃饭从不心疼,那些花钱拮据,攒钱吃大餐的日子你不是和我在一起;我认识你的时候,你知道不同的花代表不同的花语,而那个伴你成长教会你这些的女生不是我。我们半路相遇,都是成品,那些打磨过我们的人都随着时光走远了。
我是应该唏嘘还是应该感谢, 别人教会你这些,陪着 你长大,然后你们分开,再转到我的身边。我是应该庆幸吧,看到的你已是稳重大方、彬彬有礼、知道对女生该说什么话,如何讨人喜欢。
可是我多么想有一个人和我一起成长,和我一起年少轻狂、少不更事,从青涩到成熟都只是同一个人,成长的痕迹在对方眼中就能看到。二十多年的岁月中有十几年是和他相伴,然后一起让小时候的梦想一步步都成为现实。
遗憾的是,所有的旅伴都是暂时的,我终于还是自己长大了,跟着不同的队伍,最后还是一个人、孤独的长大了。
(我知道你也会有这样的想法,你不止一次的羡慕别人的青梅竹马;而我也好想参与你过去的成长,陪你从青涩到成熟,我想去你的家乡,你的小学,你的中学,去所有你曾经生活过的地方,去你留下无数美好记忆的地方看看,感受一下我的你在还没有我陪伴的时候是如何一步步长大的。过去的已不可追,让我从现在开始陪伴你,关注并参与你的人生吧
附我当晚看到的一条相关的状态,深有感触:
好友档案 : 总有一天,会有一个人,看你写过的所有状态,读你写下的所有日志,看你从小到大的所有照片,甚至去别的地方寻找关于你的信息,试着听你听的歌,走你走过的地方,看你喜欢看的书,品尝你总是大呼好吃的东西~ 因为Ta想弥补上,你的青春里——Ta迟到的时光。)

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值