题目链接
题意:求
∑ni=1∑mj=1φ(ij)
∑
i
=
1
n
∑
j
=
1
m
φ
(
i
j
)
模
1000000007
1000000007
的值。
n<=100000,m<=1000000000
n
<=
100000
,
m
<=
1000000000
。
题解:首先我们有一个结论。
若
|μ(n)|=1
|
μ
(
n
)
|
=
1
,则
φ(nm)=∑k|gcd(n,m)φ(nk)φ(m)
φ
(
n
m
)
=
∑
k
|
g
c
d
(
n
,
m
)
φ
(
n
k
)
φ
(
m
)
。
怎么证?
∑k|gcd(n,m)φ(nk)φ(m)
∑
k
|
g
c
d
(
n
,
m
)
φ
(
n
k
)
φ
(
m
)
=φ(m)∑k|gcd(n,m)φ(nk)
=
φ
(
m
)
∑
k
|
g
c
d
(
n
,
m
)
φ
(
n
k
)
=φ(m)∑k|gcd(n,m)φ(n)φ(k)
=
φ
(
m
)
∑
k
|
g
c
d
(
n
,
m
)
φ
(
n
)
φ
(
k
)
=φ(n)φ(m)∑k|gcd(n,m)1φ(k)
=
φ
(
n
)
φ
(
m
)
∑
k
|
g
c
d
(
n
,
m
)
1
φ
(
k
)
=φ(n)φ(m)∑k|gcd(n,m)φ(gcd(n,m))φ(k)φ(gcd(n,m))
=
φ
(
n
)
φ
(
m
)
∑
k
|
g
c
d
(
n
,
m
)
φ
(
g
c
d
(
n
,
m
)
)
φ
(
k
)
φ
(
g
c
d
(
n
,
m
)
)
=φ(n)φ(m)1φ(gcd(n,m))∑k|gcd(n,m)φ(gcd(n,m))φ(k)
=
φ
(
n
)
φ
(
m
)
1
φ
(
g
c
d
(
n
,
m
)
)
∑
k
|
g
c
d
(
n
,
m
)
φ
(
g
c
d
(
n
,
m
)
)
φ
(
k
)
=φ(n)φ(m)1φ(gcd(n,m))∑k|gcd(n,m)φ(gcd(n,m)k)
=
φ
(
n
)
φ
(
m
)
1
φ
(
g
c
d
(
n
,
m
)
)
∑
k
|
g
c
d
(
n
,
m
)
φ
(
g
c
d
(
n
,
m
)
k
)
=φ(n)φ(m)1φ(gcd(n,m))∑k|gcd(n,m)φ(gcd(n,m)k)
=
φ
(
n
)
φ
(
m
)
1
φ
(
g
c
d
(
n
,
m
)
)
∑
k
|
g
c
d
(
n
,
m
)
φ
(
g
c
d
(
n
,
m
)
k
)
=φ(n)φ(m)gcd(n,m)φ(gcd(n,m))
=
φ
(
n
)
φ
(
m
)
g
c
d
(
n
,
m
)
φ
(
g
c
d
(
n
,
m
)
)
这是因为
∑d|nφ(d)=n
∑
d
|
n
φ
(
d
)
=
n
。
=φ(ngcd(n,m))φ(m)gcd(n,m)
=
φ
(
n
g
c
d
(
n
,
m
)
)
φ
(
m
)
g
c
d
(
n
,
m
)
推导过程中用到了很多
|μ(n)|=1
|
μ
(
n
)
|
=
1
的性质。
这个式子就很显然了,因为根据
|μ(n)|=1
|
μ
(
n
)
|
=
1
,
ngcd(n,m)
n
g
c
d
(
n
,
m
)
与
m
m
互质,于是,想一想就知道了。于是就证完了!
若
|μ(n)|=0
|
μ
(
n
)
|
=
0
,设k为最小的正整数满足
k|n
k
|
n
,
μ(k)=1
μ
(
k
)
=
1
。
则
φ(nm)=φ(km)∗nk
φ
(
n
m
)
=
φ
(
k
m
)
∗
n
k
接下来我们继续推导。
我们令
S(n,m)=∑mi=1φ(ni)
S
(
n
,
m
)
=
∑
i
=
1
m
φ
(
n
i
)
则
ans=∑ni=1S(i,m)
a
n
s
=
∑
i
=
1
n
S
(
i
,
m
)
。
对于
S(n,m)
S
(
n
,
m
)
,若
|μ(n)|=1
|
μ
(
n
)
|
=
1
且
n≠1
n
≠
1
,则
S(n,m)
S
(
n
,
m
)
=∑mi=1φ(ni)
=
∑
i
=
1
m
φ
(
n
i
)
=∑mi=1∑d|gcd(n,i)φ(nd)φ(i)
=
∑
i
=
1
m
∑
d
|
g
c
d
(
n
,
i
)
φ
(
n
d
)
φ
(
i
)
=∑d|nφ(nd)∑⌊md⌋i=1φ(i)
=
∑
d
|
n
φ
(
n
d
)
∑
i
=
1
⌊
m
d
⌋
φ
(
i
)
=∑d|nφ(nd)S(d,⌊md⌋)
=
∑
d
|
n
φ
(
n
d
)
S
(
d
,
⌊
m
d
⌋
)
否则若
|μ(n)|=0
|
μ
(
n
)
|
=
0
且
n≠1
n
≠
1
,
设k为最小的正整数满足
k|n
k
|
n
,
μ(k)=1
μ
(
k
)
=
1
,则
S(n,m)=S(k,m)∗nk
S
(
n
,
m
)
=
S
(
k
,
m
)
∗
n
k
否则当
n=1
n
=
1
,
S(n,m)=∑mi=1φ(i)
S
(
n
,
m
)
=
∑
i
=
1
m
φ
(
i
)
跟求
μ
μ
的前缀和类似,
∑ni=1∑j|iφ(j)=n(n+1)2
∑
i
=
1
n
∑
j
|
i
φ
(
j
)
=
n
(
n
+
1
)
2
,因为
∑j|iφ(j)=i
∑
j
|
i
φ
(
j
)
=
i
。
=>
∑nj=1∑⌊nj⌋i=1φ(j)=n(n+1)2
∑
j
=
1
n
∑
i
=
1
⌊
n
j
⌋
φ
(
j
)
=
n
(
n
+
1
)
2
=>
∑ni=1∑⌊ni⌋j=1φ(j)=n(n+1)2
∑
i
=
1
n
∑
j
=
1
⌊
n
i
⌋
φ
(
j
)
=
n
(
n
+
1
)
2
=>
∑nj=1φ(j)=n(n+1)2−∑ni=2∑⌊ni⌋j=1φ(j)
∑
j
=
1
n
φ
(
j
)
=
n
(
n
+
1
)
2
−
∑
i
=
2
n
∑
j
=
1
⌊
n
i
⌋
φ
(
j
)
,即把
i=1
i
=
1
带入。
=>
S(n,m)=m(m+1)2−∑mi=2S(n,⌊mi⌋)
S
(
n
,
m
)
=
m
(
m
+
1
)
2
−
∑
i
=
2
m
S
(
n
,
⌊
m
i
⌋
)
。
于是我们只需要开个map无脑记搜乱搞即可。时间复杂度不会算= =
丑得不堪入目的 代码:
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<map>
using namespace std;
typedef long long ll;
const int N=1000005;
const ll mod=1000000007;
int n,m,p[N];
bool vis[N];
ll ans,mu[N],phi[N],sum[N];
map<int,map<int,ll> >mp;
ll solve(int n,int m){
if(m<=1){
return phi[n*m];
}else if(n==1){
if(m<=1000000){
return sum[m];
}
if(mp[n][m]){
return mp[n][m];
}
ll res=1LL*m*(m+1)/2;
for(int i=2,last;i<=m;i=last+1){
last=m/(m/i);
res-=solve(n,m/i)*(last-i+1)%mod;
res%=mod;
}
return mp[n][m]=res;
}else{
if(mp[n][m]){
return mp[n][m];
}
int tmp=0;
for(int i=1;i*i<=n;i++){
if(n%i==0&&mu[n/i]){
tmp=i;
break;
}
}
if(!tmp){
for(int i=sqrt(n);i>=1;i--){
if(n%i==0&&mu[i]){
tmp=n/i;
break;
}
}
}
n/=tmp;
ll res=0;
for(int i=1;i*i<=n;i++){
if(n%i==0){
res+=phi[n/i]*solve(i,m/i)%mod;
res%=mod;
if(i*i!=n){
res+=phi[i]*(solve(n/i,m/(n/i)))%mod;
res%=mod;
}
}
}
n*=tmp;
res=res*tmp%mod;
return mp[n][m]=res;
}
}
int main(){
mu[1]=phi[1]=1;
for(int i=2;i<=1000000;i++){
if(!vis[i]){
p[++p[0]]=i;
mu[i]=-1;
phi[i]=i-1;
}
for(int j=1;j<=p[0]&&i*p[j]<=1000000;j++){
vis[i*p[j]]=true;
if(i%p[j]){
mu[i*p[j]]=-mu[i];
phi[i*p[j]]=phi[i]*(p[j]-1);
}else{
phi[i*p[j]]=phi[i]*p[j];
break;
}
}
}
for(int i=1;i<=1000000;i++){
sum[i]=sum[i-1]+phi[i];
sum[i]%=mod;
}
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
ans+=solve(i,m);
ans%=mod;
}
printf("%lld\n",(ans+mod)%mod);
return 0;
}