【bzoj3512】DZY Loves Math IV 【杜教筛】

题目链接
题意: ni=1mj=1φ(ij) ∑ i = 1 n ∑ j = 1 m φ ( i j ) 1000000007 1000000007 的值。 n<=100000,m<=1000000000 n <= 100000 , m <= 1000000000
题解:首先我们有一个结论。
|μ(n)|=1 | μ ( n ) | = 1 ,则 φ(nm)=k|gcd(n,m)φ(nk)φ(m) φ ( n m ) = ∑ k | g c d ( n , m ) φ ( n k ) φ ( m )
怎么证?
k|gcd(n,m)φ(nk)φ(m) ∑ k | g c d ( n , m ) φ ( n k ) φ ( m )
=φ(m)k|gcd(n,m)φ(nk) = φ ( m ) ∑ k | g c d ( n , m ) φ ( n k )
=φ(m)k|gcd(n,m)φ(n)φ(k) = φ ( m ) ∑ k | g c d ( n , m ) φ ( n ) φ ( k )
=φ(n)φ(m)k|gcd(n,m)1φ(k) = φ ( n ) φ ( m ) ∑ k | g c d ( n , m ) 1 φ ( k )
=φ(n)φ(m)k|gcd(n,m)φ(gcd(n,m))φ(k)φ(gcd(n,m)) = φ ( n ) φ ( m ) ∑ k | g c d ( n , m ) φ ( g c d ( n , m ) ) φ ( k ) φ ( g c d ( n , m ) )
=φ(n)φ(m)1φ(gcd(n,m))k|gcd(n,m)φ(gcd(n,m))φ(k) = φ ( n ) φ ( m ) 1 φ ( g c d ( n , m ) ) ∑ k | g c d ( n , m ) φ ( g c d ( n , m ) ) φ ( k )
=φ(n)φ(m)1φ(gcd(n,m))k|gcd(n,m)φ(gcd(n,m)k) = φ ( n ) φ ( m ) 1 φ ( g c d ( n , m ) ) ∑ k | g c d ( n , m ) φ ( g c d ( n , m ) k )
=φ(n)φ(m)1φ(gcd(n,m))k|gcd(n,m)φ(gcd(n,m)k) = φ ( n ) φ ( m ) 1 φ ( g c d ( n , m ) ) ∑ k | g c d ( n , m ) φ ( g c d ( n , m ) k )
=φ(n)φ(m)gcd(n,m)φ(gcd(n,m)) = φ ( n ) φ ( m ) g c d ( n , m ) φ ( g c d ( n , m ) ) 这是因为 d|nφ(d)=n ∑ d | n φ ( d ) = n
=φ(ngcd(n,m))φ(m)gcd(n,m) = φ ( n g c d ( n , m ) ) φ ( m ) g c d ( n , m )
推导过程中用到了很多 |μ(n)|=1 | μ ( n ) | = 1 的性质。
这个式子就很显然了,因为根据 |μ(n)|=1 | μ ( n ) | = 1 ngcd(n,m) n g c d ( n , m ) m m 互质,于是φ(ngcd(n,m))φ(m)gcd(n,m)=φ(nm),想一想就知道了。于是就证完了!
|μ(n)|=0 | μ ( n ) | = 0 ,设k为最小的正整数满足 k|n k | n μ(k)=1 μ ( k ) = 1
φ(nm)=φ(km)nk φ ( n m ) = φ ( k m ) ∗ n k
接下来我们继续推导。
我们令 S(n,m)=mi=1φ(ni) S ( n , m ) = ∑ i = 1 m φ ( n i )
ans=ni=1S(i,m) a n s = ∑ i = 1 n S ( i , m )
对于 S(n,m) S ( n , m ) ,若 |μ(n)|=1 | μ ( n ) | = 1 n1 n ≠ 1 ,则
S(n,m) S ( n , m )
=mi=1φ(ni) = ∑ i = 1 m φ ( n i )
=mi=1d|gcd(n,i)φ(nd)φ(i) = ∑ i = 1 m ∑ d | g c d ( n , i ) φ ( n d ) φ ( i )
=d|nφ(nd)mdi=1φ(i) = ∑ d | n φ ( n d ) ∑ i = 1 ⌊ m d ⌋ φ ( i )
=d|nφ(nd)S(d,md) = ∑ d | n φ ( n d ) S ( d , ⌊ m d ⌋ )
否则若 |μ(n)|=0 | μ ( n ) | = 0 n1 n ≠ 1
设k为最小的正整数满足 k|n k | n μ(k)=1 μ ( k ) = 1 ,则
S(n,m)=S(k,m)nk S ( n , m ) = S ( k , m ) ∗ n k
否则当 n=1 n = 1
S(n,m)=mi=1φ(i) S ( n , m ) = ∑ i = 1 m φ ( i )
跟求 μ μ 的前缀和类似, ni=1j|iφ(j)=n(n+1)2 ∑ i = 1 n ∑ j | i φ ( j ) = n ( n + 1 ) 2 ,因为 j|iφ(j)=i ∑ j | i φ ( j ) = i
=> nj=1nji=1φ(j)=n(n+1)2 ∑ j = 1 n ∑ i = 1 ⌊ n j ⌋ φ ( j ) = n ( n + 1 ) 2
=> ni=1nij=1φ(j)=n(n+1)2 ∑ i = 1 n ∑ j = 1 ⌊ n i ⌋ φ ( j ) = n ( n + 1 ) 2
=> nj=1φ(j)=n(n+1)2ni=2nij=1φ(j) ∑ j = 1 n φ ( j ) = n ( n + 1 ) 2 − ∑ i = 2 n ∑ j = 1 ⌊ n i ⌋ φ ( j ) ,即把 i=1 i = 1 带入。
=> S(n,m)=m(m+1)2mi=2S(n,mi) S ( n , m ) = m ( m + 1 ) 2 − ∑ i = 2 m S ( n , ⌊ m i ⌋ )
于是我们只需要开个map无脑记搜乱搞即可。时间复杂度不会算= =
丑得不堪入目的 代码:

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<map>
using namespace std;
typedef long long ll;
const int N=1000005;
const ll mod=1000000007;
int n,m,p[N];
bool vis[N];
ll ans,mu[N],phi[N],sum[N];
map<int,map<int,ll> >mp;
ll solve(int n,int m){
    if(m<=1){
        return phi[n*m];
    }else if(n==1){
        if(m<=1000000){
            return sum[m];
        }
        if(mp[n][m]){
            return mp[n][m];
        }
        ll res=1LL*m*(m+1)/2;
        for(int i=2,last;i<=m;i=last+1){
            last=m/(m/i);
            res-=solve(n,m/i)*(last-i+1)%mod;
            res%=mod;
        }
        return mp[n][m]=res;
    }else{
        if(mp[n][m]){
            return mp[n][m];
        }
        int tmp=0;
        for(int i=1;i*i<=n;i++){
            if(n%i==0&&mu[n/i]){
                tmp=i;
            break;
            }
        }
        if(!tmp){
            for(int i=sqrt(n);i>=1;i--){
                if(n%i==0&&mu[i]){
                    tmp=n/i;
                    break;
                }
            }
        }
        n/=tmp;
        ll res=0;
        for(int i=1;i*i<=n;i++){
            if(n%i==0){
                res+=phi[n/i]*solve(i,m/i)%mod;
                res%=mod;
                if(i*i!=n){
                    res+=phi[i]*(solve(n/i,m/(n/i)))%mod;
                    res%=mod;
                }
            }
        }
        n*=tmp;
        res=res*tmp%mod;
        return mp[n][m]=res;
    }
}
int main(){
    mu[1]=phi[1]=1;
    for(int i=2;i<=1000000;i++){
        if(!vis[i]){
            p[++p[0]]=i;
            mu[i]=-1;
            phi[i]=i-1;
        }
        for(int j=1;j<=p[0]&&i*p[j]<=1000000;j++){
            vis[i*p[j]]=true;
            if(i%p[j]){
                mu[i*p[j]]=-mu[i];
                phi[i*p[j]]=phi[i]*(p[j]-1);
            }else{
                phi[i*p[j]]=phi[i]*p[j];
                break;
            }
        }
    }
    for(int i=1;i<=1000000;i++){
        sum[i]=sum[i-1]+phi[i];
        sum[i]%=mod;
    }
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++){
        ans+=solve(i,m);
        ans%=mod;
    }
    printf("%lld\n",(ans+mod)%mod);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值