还是自己的思维不够缜密啊,想到了正解却在代码实现上忽略了一些细节。。。
考虑如何使得死的人最少。
首先,我们发现入度为0的点一定是存活的,它指向的点一定会被杀死。我们就把它指向的点给删掉。这样有会有一些点的入度变成0。重复以上一个类似于拓扑排序的过程,最后剩下一些环,设某个环的大小为
siz
s
i
z
,则最少死亡
⌊siz+12⌋
⌊
s
i
z
+
1
2
⌋
人。
考虑如何让死的人最多。
一个点连向自己,一定会死。
单独的一个环,设大小为
siz
s
i
z
,则最多死
siz−1
s
i
z
−
1
个人。
如果是一个环,上面挂着一些
DAG
D
A
G
,则最多死总点数减去入度为0的点数个人。然而这一种情况我写挂了一点细节,WA了两发QAQ
#include<bits/stdc++.h>
using namespace std;
const int N=1000005;
int n,ans1,ans2,tot,a[N],in[N],pos[N];
queue<int> q;
bool flag[N],ck[N],tf;
void dfs(int rt,int u){
tot++;
flag[u]=true;
tf|=ck[u];
if(a[u]!=rt){
dfs(rt,a[u]);
}
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
in[a[i]]++;
}
for(int i=1;i<=n;i++){
if(!in[i]){
ans2--;
q.push(i);
}
}
while(!q.empty()){
int u=q.front();
flag[u]=true;
q.pop();
if(!flag[a[u]]){
flag[a[u]]=true;
ans1++;
if(!flag[a[a[u]]]){
ck[a[a[u]]]=true;
in[a[a[u]]]--;
if(!in[a[a[u]]]){
q.push(a[a[u]]);
}
}
}
}
for(int i=1;i<=n;i++){
if(flag[i]){
ans2++;
}
}
for(int i=1;i<=n;i++){
if(!flag[i]){
tot=tf=0;
dfs(i,i);
ans1+=(tot+1)/2;
if(tot==1){
ans2++;
}else{
ans2+=tot-1+tf;
}
}
}
printf("%d %d\n",ans1,ans2);
return 0;
}