数论 · 欧拉定理

UPDATE

  • 2021 - 12 - 02:添加了扩展欧拉定理。

  • 2022 - 01 - 11:添加了欧拉反演

扩欧拉证明,待填坑。

1 欧拉函数

φ ( n ) \varphi(n) φ(n) 表示小于等于 n n n 的数中与 n n n 互质的数的数目。

举例: φ ( 8 ) = 4 \varphi(8)=4 φ(8)=4,分别是:1、3、5、7。

注意: φ ( 1 ) = 1 \varphi(1)=1 φ(1)=1


引理 1

引理 1.1:当 n n n 为质数时,有 φ ( n ) = n − 1 \varphi (n)=n-1 φ(n)=n1

证明:满足条件的数为 1 到 n − 1 n-1 n1

引理 1.2:若 n = p k n=p^k n=pk p p p 为质数时, φ ( n ) = ( p − 1 ) ∗ p k − 1 \varphi(n)=(p-1)*p^{k-1} φ(n)=(p1)pk1

证明:

n n n 小的整数中,只有 p ∗ t   ( t ∈ [ 1 , p k − 1 − 1 ] ) p*t\ (t \in [1,p^{k-1}-1]) pt (t[1,pk11]) 这些数与 n n n 不互质。

所以 φ ( n ) = p k − 1 − ( p k − 1 − 1 ) = p k − p k − 1 = ( p − 1 ) ∗ p k − 1 \varphi (n)=p^k-1-(p^{k-1}-1)=p^k-p^{k-1}=(p-1) * p^{k-1} φ(n)=pk1(pk11)=pkpk1=(p1)pk1

证毕。

引理 1.3:若 n = a ∗ b n=a* b n=ab a ⊥ b a\perp b ab,则 φ ( n ) = φ ( a ) ∗ φ ( b ) \varphi (n)=\varphi(a) * \varphi (b) φ(n)=φ(a)φ(b)

说白了,就是函数 φ \varphi φ 为积性函数。

证明:

易知,与 a a a 互质的数有 φ ( a ) \varphi(a) φ(a) 个,与 b b b 互质的数有 φ ( b ) \varphi (b) φ(b) 个。

那么一个数 x x x 要想与 n n n 互质,则必须满足同时与 a a a b b b 都互质。

所以 φ ( n ) = φ ( a ) ∗ φ ( b ) \varphi(n)=\varphi (a)* \varphi (b) φ(n)=φ(a)φ(b)

证毕。


引理 2

n = p 1 a 1 ∗ p 2 a 2 ∗ ⋯ ∗ p k a k n = p_1^{a_1} * p_2^{a_2} * \cdots * p_k^{a_k} n=p1a1p2a2pkak

根据引理 1.3,有:

φ ( n ) = φ ( p 1 a 1 ) ∗ φ ( p 2 a 2 ) ∗ ⋯ φ ( p k a k ) \varphi (n)= \varphi(p_1^{a_1}) * \varphi (p_2^{a_2})* \cdots \varphi (p_k^{a_k}) φ(n)=φ(p1a1)φ(p2a2)φ(pkak)

根据引理 1.2,有:

右式 = p 1 a 1 ∗ p 2 a 2 ∗ ⋯ ∗ p k a k ∗ ( 1 − 1 p 1 ) ∗ ( 1 − 1 p 2 ) ∗ ⋯ ∗ ( 1 − 1 p k ) \text{右式} = p_1^{a_1} * p_2^{a_2} * \cdots * p_k^{a_k} * (1 - \dfrac {1}{p_1}) * (1-\dfrac{1}{p_2})*\cdots * (1-\dfrac {1}{p_k}) 右式=p1a1p2a2pkak(1p11)(1p21)(1pk1)

综上,我们可以得到:

φ ( n ) = n ∗ ( 1 − 1 p 1 ) ∗ ( 1 − 1 p 2 ) ∗ ⋯ ∗ ( 1 − 1 p k ) \varphi (n) = n * (1 - \dfrac {1}{p_1}) * (1-\dfrac{1}{p_2})*\cdots * (1-\dfrac {1}{p_k}) φ(n)=n(1p11)(1p21)(1pk1)

2 欧拉定理

结论

当  a ⊥ m  时, 有  a φ ( m ) ≡ 1 ( m o d m ) \text{当 }a\perp m\ \text{时, 有 } a^{\varphi(m)} \equiv 1 \pmod m  am  aφ(m)1(modm)

证明:

建变量 p p p,使 p ← a ∗ x i p \gets a * x_i paxi。此处 x i x_i xi 为第 i i i 大的与 m m m 互质的数。

1 p p p 之间两两不同

∀   i , j    ( i ≠ j )   p i − p j ≠ 0   m o d   m \forall\ i, j\ \ (i\ne j)\ p_i - p_j \ne 0 \bmod m  i,j  (i=j) pipj=0modm

证明:因为 x i x_i xi 必定两两不同,证毕。

2 p i % m p_i \% m pi%m 只有 φ \varphi φ 种不同的取值

p i = k m + r p_i=km+r pi=km+r,即 a x i − k m = r ax_i-km = r axikm=r

易知 gcd ⁡ ( a , m ) = 1 \gcd (a, m)=1 gcd(a,m)=1,此时最后解出来的 x i x_i xi 必定还要乘上 r r r

因为 x i ⊥ m x_i \perp m xim,所以 gcd ⁡ ( r , m ) = 1 \gcd (r,m)=1 gcd(r,m)=1

3

综合 1、2 可以得出 p i % m p_i \% m pi%m x i x_i xi 是一一对应的。

所以 ∏ i = 1 φ ( m ) p i ≡ ∏ i = 1 φ ( m ) x i ( m o d m ) \prod_{i=1}^{\varphi(m)} p_i \equiv \prod_{i=1}^{\varphi(m)} x_i \pmod m i=1φ(m)pii=1φ(m)xi(modm),

a φ ( m ) ∏ i = 1 φ ( m ) x i ≡ ∏ i = 1 φ ( m ) x i ( m o d m ) a ^ {\varphi(m)}\prod_{i=1}^{\varphi(m)} x_i \equiv \prod_{i=1}^{\varphi(m)} x_i \pmod m aφ(m)i=1φ(m)xii=1φ(m)xi(modm)

化简,得到: a φ ( m ) ≡ 1 ( m o d m ) a^{\varphi(m)} \equiv 1 \pmod m aφ(m)1(modm)

证毕。

板子题:P5091 【模板】扩展欧拉定理

3 扩展欧拉定理

无需 a ⊥ m a \perp m am,求解 a c   m o d   m a^c \bmod m acmodm

  • c < φ ( m ) c < \varphi(m) c<φ(m) 时,答案为 a c a^c ac

  • c = φ ( m ) c = \varphi (m) c=φ(m) 时,答案为 1 1 1

  • c > φ ( m ) c > \varphi (m) c>φ(m) 时,答案为 a ( c   m o d   φ ( m ) ) + φ ( m ) a ^ {(c \bmod \varphi (m)) + \varphi(m)} a(cmodφ(m))+φ(m)

证明啊,问就是看得懂,但自己证不出。


—— E n d End End——

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值