题面
题解
神仙fl!/se
题意:有一个大小为 n n n 的集合,易知它有 2 n 2^n 2n 个不同的子集,在这些子集中选出一些集合,使得他们的交集大小为 4 4 4 的倍数,求选的方案数。
首先我们设 f ( i ) f(i) f(i) 表示钦定交集大小至少为 i i i 时的方案数,易知:
f ( i ) = ( n i ) ( 2 2 n − i − 1 ) f(i)=\binom{n}{i}\left(2^{2^{n-i}}-1\right) f(i)=(in)(22n−i−1)
减 1 1 1 是因为不能不选。
考虑构造容斥系数 α ( i ) \alpha(i) α(i) 使得答案为:
a n s = ∑ i = 0 n α ( i ) f ( i ) ans=\sum_{i=0}^{n}\alpha(i)f(i) ans=i=0∑nα(i)f(i)
我们考虑一种选择的方案,设这种方案选出的集合的并集大小为 x x x。
一方面,它实际的贡献应该是 [ 4 ∣ x ] [4|x] [4∣x]。
另一方面,我们考虑它在式子中的贡献。显然它只会在 0 ≤ i ≤ x 0\leq i\leq x 0≤i≤x 的 f ( i ) f(i) f(i) 有贡献,那么它在 a n s ans ans 中的贡献为:
∑ i = 0 x ( x i ) α ( i ) \sum_{i=0}^x\binom{x}{i}\alpha(i) i=0∑x(ix)α(i)
那么可以列出方程:
[ 4 ∣ x ] = ∑ i = 0 x ( x i ) α ( i ) [4|x]=\sum_{i=0}^x\binom{x}{i}\alpha(i) [4∣x]=i=0∑x(ix)α(i)
根据单位根反演( f ( n ) = ∑ i = 0 n ( n i ) g ( i ) ⟺ g ( n ) = ∑ i = 0 n ( − 1 ) n − i ( n i ) f ( i ) f(n)=\sum\limits_{i=0}^n\dbinom{n}{i}g(i)\iff g(n)=\sum\limits_{i=0}^n(-1)^{n-i}\dbinom{n}{i}f(i) f(n)=i=0∑n(in)g(i)⟺g(n)=i=0∑n(−1)n−i(in)f(i)):
α ( x ) = ∑ i = 0 x ( − 1 ) x − i ( x i ) [ 4 ∣ i ] \alpha(x)=\sum_{i=0}^x(-1)^{x-i}\dbinom{x}{i}[4|i] α(x)=i=0∑x(−1)x−i(ix)[4∣i]
[ 4 ∣ x ] [4|x] [4∣x] 不太好处理,如果它是个多项式就好了。
神奇的方法:单位根反演!
补充知识:单位根反演
定理: ∀ k ≥ 0 , [ n ∣ k ] = 1 n ∑ i = 0 n − 1 w n i k \forall k\geq 0,[n|k]=\dfrac{1}{n}\sum\limits_{i=0}^{n-1}w_{n}^{ik} ∀k≥0,[n∣k]=n1i=0∑n−1wnik。(其中 w w w 是单位根)
证明:
当 n ∣ k n|k n∣k 时, w n i k = 1 w_n^{ik}=1 wnik=1,故右式值为 1 1 1;
当不满足 n ∣ k n|k n∣k 时, ∑ i = 0 n − 1 w n i k \sum\limits_{i=0}^{n-1}w_{n}^{ik} i=0∑n−1wnik 是等比数列求和的形式,值为 0 0 0。
于是:
α ( x ) = ∑ i = 0 x ( − 1 ) x − i ( x i ) 1 4 ∑ j = 0 3 w 4 j i = 1 4 ∑ j = 0 3 ∑ i = 0 x ( − 1 ) x − i ( x i ) w 4 j i \begin{aligned} \alpha(x)&=\sum_{i=0}^x(-1)^{x-i}\dbinom{x}{i}\dfrac{1}{4}\sum_{j=0}^{3}w_4^{ji}\\ &=\dfrac{1}{4}\sum_{j=0}^{3}\sum_{i=0}^x(-1)^{x-i}\dbinom{x}{i}w_4^{ji}\\ \end{aligned} α(x)=i=0∑x(−1)x−i(ix)41j=0∑3w4ji=41j=0∑3i=0∑x(−1)x−i(ix)w4ji
注意到 ∑ i = 0 x ( − 1 ) x − i ( x i ) w 4 j i = ∑ i = 0 x ( x i ) ( − 1 ) x − i ( w 4 j ) i = ( − 1 + w 4 j ) x \sum\limits_{i=0}^x(-1)^{x-i}\dbinom{x}{i}w_4^{ji}=\sum\limits_{i=0}^x\dbinom{x}{i}(-1)^{x-i}\left(w_4^{j}\right)^{i}=\left(-1+w_4^j\right)^x i=0∑x(−1)x−i(ix)w4ji=i=0∑x(ix)(−1)x−i(w4j)i=(−1+w4j)x。
所以:
α ( x ) = 1 4 ∑ j = 0 3 ( − 1 + w 4 j ) x \alpha(x)=\dfrac{1}{4}\sum_{j=0}^{3}\left(-1+w_4^j\right)^x α(x)=41j=0∑3(−1+w4j)x
直接做即可,注意要严格 O ( n ) O(n) O(n)。
最后答案要加 1 1 1,是因为你可以什么都不选。(注意“什么都不选”和“只选了空集”是两种不同的方案)
代码如下:
#include<bits/stdc++.h>
#define N 10000010
using namespace std;
namespace modular
{
const int mod=998244353;
inline int add(int x,int y){return x+y>=mod?x+y-mod:x+y;}
inline int dec(int x,int y){return x-y<0?x-y+mod:x-y;}
inline int mul(int x,int y){return 1ll*x*y%mod;}
const int inv2=(mod+1)/2,inv4=mul(inv2,inv2);
}using namespace modular;
inline int poww(int a,int b)
{
int ans=1;
while(b)
{
if(b&1) ans=mul(ans,a);
a=mul(a,a);
b>>=1;
}
return ans;
}
inline int read()
{
int x=0,f=1;
char ch=getchar();
while(ch<'0'||ch>'9')
{
if(ch=='-') f=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9')
{
x=(x<<1)+(x<<3)+(ch^'0');
ch=getchar();
}
return x*f;
}
int n;
int facn,ifac[N];
int pow22[N];
int w[4];
void init()
{
facn=1;
for(int i=1;i<=n;i++) facn=mul(facn,i);
ifac[n]=poww(facn,mod-2);
for(int i=n;i>=1;i--) ifac[i-1]=mul(ifac[i],i);
pow22[0]=2;
for(int i=1;i<=n;i++) pow22[i]=mul(pow22[i-1],pow22[i-1]);
int gn=poww(3,(mod-1)/4);
int g=1;
for(int i=0;i<4;g=mul(g,gn),i++) w[i]=g;
}
int Cn(int m)
{
return mul(mul(facn,ifac[m]),ifac[n-m]);
}
int main()
{
n=read();
init();
int now[4]={1,1,1,1},ans=0;
for(int i=0;i<=n;i++)
{
int a=0;
for(int j=0;j<4;j++)
{
a=add(a,now[j]);
now[j]=mul(now[j],dec(w[j],1));
}
a=mul(inv4,a);
int f=mul(Cn(i),dec(pow22[n-i],1));
ans=add(ans,mul(f,a));
}
printf("%d\n",add(ans,1));
return 0;
}