【XSY2813】【LOJ6358】前夕(容斥)

题面

前夕

题解

神仙fl!/se

题意:有一个大小为 n n n 的集合,易知它有 2 n 2^n 2n 个不同的子集,在这些子集中选出一些集合,使得他们的交集大小为 4 4 4 的倍数,求选的方案数。

首先我们设 f ( i ) f(i) f(i) 表示钦定交集大小至少为 i i i 时的方案数,易知:

f ( i ) = ( n i ) ( 2 2 n − i − 1 ) f(i)=\binom{n}{i}\left(2^{2^{n-i}}-1\right) f(i)=(in)(22ni1)

1 1 1 是因为不能不选。

考虑构造容斥系数 α ( i ) \alpha(i) α(i) 使得答案为:

a n s = ∑ i = 0 n α ( i ) f ( i ) ans=\sum_{i=0}^{n}\alpha(i)f(i) ans=i=0nα(i)f(i)

我们考虑一种选择的方案,设这种方案选出的集合的并集大小为 x x x

一方面,它实际的贡献应该是 [ 4 ∣ x ] [4|x] [4x]

另一方面,我们考虑它在式子中的贡献。显然它只会在 0 ≤ i ≤ x 0\leq i\leq x 0ix f ( i ) f(i) f(i) 有贡献,那么它在 a n s ans ans 中的贡献为:

∑ i = 0 x ( x i ) α ( i ) \sum_{i=0}^x\binom{x}{i}\alpha(i) i=0x(ix)α(i)

那么可以列出方程:

[ 4 ∣ x ] = ∑ i = 0 x ( x i ) α ( i ) [4|x]=\sum_{i=0}^x\binom{x}{i}\alpha(i) [4x]=i=0x(ix)α(i)

根据单位根反演( f ( n ) = ∑ i = 0 n ( n i ) g ( i )    ⟺    g ( n ) = ∑ i = 0 n ( − 1 ) n − i ( n i ) f ( i ) f(n)=\sum\limits_{i=0}^n\dbinom{n}{i}g(i)\iff g(n)=\sum\limits_{i=0}^n(-1)^{n-i}\dbinom{n}{i}f(i) f(n)=i=0n(in)g(i)g(n)=i=0n(1)ni(in)f(i)):

α ( x ) = ∑ i = 0 x ( − 1 ) x − i ( x i ) [ 4 ∣ i ] \alpha(x)=\sum_{i=0}^x(-1)^{x-i}\dbinom{x}{i}[4|i] α(x)=i=0x(1)xi(ix)[4i]

[ 4 ∣ x ] [4|x] [4x] 不太好处理,如果它是个多项式就好了。

神奇的方法:单位根反演!

补充知识:单位根反演

定理: ∀ k ≥ 0 , [ n ∣ k ] = 1 n ∑ i = 0 n − 1 w n i k \forall k\geq 0,[n|k]=\dfrac{1}{n}\sum\limits_{i=0}^{n-1}w_{n}^{ik} k0,[nk]=n1i=0n1wnik。(其中 w w w 是单位根)

证明:

n ∣ k n|k nk 时, w n i k = 1 w_n^{ik}=1 wnik=1,故右式值为 1 1 1

当不满足 n ∣ k n|k nk 时, ∑ i = 0 n − 1 w n i k \sum\limits_{i=0}^{n-1}w_{n}^{ik} i=0n1wnik 是等比数列求和的形式,值为 0 0 0

于是:

α ( x ) = ∑ i = 0 x ( − 1 ) x − i ( x i ) 1 4 ∑ j = 0 3 w 4 j i = 1 4 ∑ j = 0 3 ∑ i = 0 x ( − 1 ) x − i ( x i ) w 4 j i \begin{aligned} \alpha(x)&=\sum_{i=0}^x(-1)^{x-i}\dbinom{x}{i}\dfrac{1}{4}\sum_{j=0}^{3}w_4^{ji}\\ &=\dfrac{1}{4}\sum_{j=0}^{3}\sum_{i=0}^x(-1)^{x-i}\dbinom{x}{i}w_4^{ji}\\ \end{aligned} α(x)=i=0x(1)xi(ix)41j=03w4ji=41j=03i=0x(1)xi(ix)w4ji

注意到 ∑ i = 0 x ( − 1 ) x − i ( x i ) w 4 j i = ∑ i = 0 x ( x i ) ( − 1 ) x − i ( w 4 j ) i = ( − 1 + w 4 j ) x \sum\limits_{i=0}^x(-1)^{x-i}\dbinom{x}{i}w_4^{ji}=\sum\limits_{i=0}^x\dbinom{x}{i}(-1)^{x-i}\left(w_4^{j}\right)^{i}=\left(-1+w_4^j\right)^x i=0x(1)xi(ix)w4ji=i=0x(ix)(1)xi(w4j)i=(1+w4j)x

所以:

α ( x ) = 1 4 ∑ j = 0 3 ( − 1 + w 4 j ) x \alpha(x)=\dfrac{1}{4}\sum_{j=0}^{3}\left(-1+w_4^j\right)^x α(x)=41j=03(1+w4j)x

直接做即可,注意要严格 O ( n ) O(n) O(n)

最后答案要加 1 1 1,是因为你可以什么都不选。(注意“什么都不选”和“只选了空集”是两种不同的方案)

代码如下:

#include<bits/stdc++.h>

#define N 10000010

using namespace std;

namespace modular
{
	const int mod=998244353;
	inline int add(int x,int y){return x+y>=mod?x+y-mod:x+y;}
	inline int dec(int x,int y){return x-y<0?x-y+mod:x-y;}
	inline int mul(int x,int y){return 1ll*x*y%mod;}
	const int inv2=(mod+1)/2,inv4=mul(inv2,inv2);
}using namespace modular;

inline int poww(int a,int b)
{
	int ans=1;
	while(b)
	{
		if(b&1) ans=mul(ans,a);
		a=mul(a,a);
		b>>=1;
	}
	return ans;
}

inline int read()
{
	int x=0,f=1;
	char ch=getchar();
	while(ch<'0'||ch>'9')
	{
		if(ch=='-') f=-1;
		ch=getchar();
	}
	while(ch>='0'&&ch<='9')
	{
		x=(x<<1)+(x<<3)+(ch^'0');
		ch=getchar();
	}
	return x*f;
}

int n;
int facn,ifac[N];
int pow22[N];
int w[4];

void init()
{
	facn=1;
	for(int i=1;i<=n;i++) facn=mul(facn,i);
	ifac[n]=poww(facn,mod-2);
	for(int i=n;i>=1;i--) ifac[i-1]=mul(ifac[i],i);
	pow22[0]=2;
	for(int i=1;i<=n;i++) pow22[i]=mul(pow22[i-1],pow22[i-1]);
	int gn=poww(3,(mod-1)/4);
	int g=1;
	for(int i=0;i<4;g=mul(g,gn),i++) w[i]=g;
}

int Cn(int m)
{
	return mul(mul(facn,ifac[m]),ifac[n-m]);
}

int main()
{
	n=read();
	init();
	int now[4]={1,1,1,1},ans=0;
	for(int i=0;i<=n;i++)
	{
		int a=0;
		for(int j=0;j<4;j++)
		{
			a=add(a,now[j]);
			now[j]=mul(now[j],dec(w[j],1));
		}
		a=mul(inv4,a);
		int f=mul(Cn(i),dec(pow22[n-i],1));
		ans=add(ans,mul(f,a));
	}
	printf("%d\n",add(ans,1));
	return 0;
}
根据提供的引用内容,你遇到的问题是在发送HTTP POST请求时收到了403 Forbidden的错误。这个错误通常表示你没有权限访问所请求的资源。 要解决这个问题,你可以采取以下步骤: 1. 首先,确保你的请求URL正确,并且你有权限访问该URL。你可以尝试在浏览器中直接访问该URL,看看是否能够成功访问。 2. 如果你确定URL是正确的,并且你有权限访问,那么可能是你的请求中缺少了必要的身份验证信息。你可以检查你的请求头中是否包含了正确的身份验证信息,比如Token或用户名密码。 3. 另外,你还可以检查服务器端的配置,确保你的请求被正确地处理和授权。你可以查看服务器的日志,以了解更多关于403错误的详细信息。 综上所述,当你收到403 Forbidden错误时,你应该首先检查URL和权限,然后确保请求中包含了正确的身份验证信息。如果问题仍然存在,你可以进一步检查服务器端的配置和日志,以找出问题的根本原因。 #### 引用[.reference_title] - *1* [kubeadm init报错10248...(The HTTP call equal to ‘curl -sSL http://localhost:10248/healthz‘ failed)](https://blog.csdn.net/weixin_45969972/article/details/123529966)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [c/c++使用libcurl库做http客户端及封装(HTTP_GET和HTTP_POST)](https://blog.csdn.net/xsy29000/article/details/103181267)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值