【SCOI2014】方伯伯的商场之旅(数位DP)

首先考虑单个数怎么做。

肯定是把每一位上的数都移到同一位(称其为决策点)上去。

假设当前数的决策点在第 p p p 位,这一位上数字是 x x x,这一位左边的数字和为 l l l,这一位右边的数字和为 r r r

那么决策点向左移对代价的新的贡献为 r + x − l r+x-l r+xl,向右移对答案的新的贡献为 l + x − r l+x-r l+xr

由此也可以看出代价关于决策点是一个单峰函数,因为不断向左移的过程中 r + x r+x r+x 一直减小, l l l 一直增大,新的贡献不断减小。

那么决策点不再移动当且仅当 r + x − l ≥ 0 r+x-l\geq 0 r+xl0 l + x − r ≥ 0 l+x-r\geq 0 l+xr0,即 x ≥ ∣ l − r ∣ x\geq |l-r| xlr,注意满足这个条件的位置 p p p 对于每个数来说有且仅有一个(事实上 p p p 还可能有两个,比如数 11 11 11 就有两个决策点,但我们可以通过一个细节去重,详见代码)。

然后就想着对于每个点如何找决策点之类的,然后我就搞不下去了。

这是因为忽略了一个很重要的信息: l , r < K log ⁡ K N 2 < 120 l,r<\dfrac{K\log_K N}{2}<120 l,r<2KlogKN<120

于是我们可以枚举 x , l , r x,l,r x,l,r,使得 x > ∣ l − r ∣ x>|l-r| x>lr,然后再去枚举满足存在某一位为 x x x、这一位左侧数字和为 l l l、右侧数字和为 r r r 且在题目给定区间 [ L , R ] [L,R] [L,R] 内的数,并统计这些数的贡献和。由于每个数仅对应着一个 p p p,也就是仅对应着一种 x , l , r x,l,r x,l,r,所以我们直接按这种方式枚举并统计答案不会算重。

现在问题的关键是如何枚举满足存在某一位为 x x x、这一位左侧数字和为 l l l、右侧数字和为 r r r 且在题目给定区间 [ L , R ] [L,R] [L,R] 内的数,并统计这些数的贡献和。

你发现贡献和不太好统计,因为 x x x 的位置不确定。

于是我们又枚举 x x x 的位置 p p p,然后问题就是如何枚举满足第 p p p 位为 x x x、这一位左侧数字和为 l l l、右侧数字和为 r r r 且在题目给定区间 [ L , R ] [L,R] [L,R] 内的数,并统计这些数的贡献和。

直接数位 DP 即可。

注意到左侧和右侧是独立的,所以可以分开两个 dfs。

枚举 p p p 时间 O ( log ⁡ K N ) O(\log_KN) O(logKN),枚举 x x x 时间 O ( K ) O(K) O(K),枚举 r r r 时间 O ( K log ⁡ K N 2 ) O\left(\dfrac{K\log_KN}{2}\right) O(2KlogKN),枚举 l l l 时间 O ( K ) O(K) O(K),数位 DP 时间 O ( 2 log ⁡ K N K log ⁡ K N 2 ) = O ( K log ⁡ K 2 N ) O(2\log _KN\dfrac{K\log_KN}{2})=O(K\log _K^2N) O(2logKN2KlogKN)=O(KlogK2N),总时间复杂度:
O ( l o g K N ⋅ K ⋅ K log ⁡ K N 2 ⋅ ( K + K log ⁡ K 2 N ) ) = O ( K 3 log ⁡ K 4 N ) O\left(log_KN\cdot K\cdot \dfrac{K\log K_N}{2}\cdot \left(K+K\log_K^2N\right)\right)=O(K^3\log_K^4N) O(logKNK2KlogKN(K+KlogK2N))=O(K3logK4N)
K = 20 K=20 K=20 时取最大。

时间复杂度算得很不严谨,估计算大了了不少,但就算这样算出来都可以过(

数位 DP 过程详见代码:

#include<bits/stdc++.h>

#define ll long long

using namespace std;

int K,num[65];
int maxn[65];
int p,x,l,r;
ll L,R;
ll fr1[65][125][2],fr2[65][125][2];
//fr1[k][res][limit]表示剩下k位数,剩余数字和为res,有无上限,在这些限制下的填数方案数
//fr2[k][res][limit]表示剩下k位数,剩余数字和为res,有无上限,在这些限制下的填数方案的贡献总和
ll fl1[65][125][2],fl2[65][125][2];
//fl1和fl2定义同fr1和fr2
ll ntot,nsum;

void dfsr(int k,int res,bool limit)//k位数,res剩余数字和,limit是否有上限
{
	if(res>maxn[k])//剪枝,剩下的位全部填K-1都到不了res
	{
		ntot=nsum=0;
		return;
	}
	if(!k)
	{
		ntot=1,nsum=0;
		return;
	}
	if(fr1[k][res][limit]!=-1)
	{
		ntot=fr1[k][res][limit];
		nsum=fr2[k][res][limit];
		return;
	}
	int t=K-1;;
	if(limit) t=num[k];
	ll tot=0,sum=0;
	for(int i=0;i<=t;i++)
	{
		if(res-i>=0)
		{
			dfsr(k-1,res-i,limit&&(i==t));
			tot+=ntot,sum+=nsum;
			sum+=1ll*ntot*(p-k)*i;//对于后面的每一种方案,(p-k)*i都会贡献一次
		}
		else break;
	}
	fr1[k][res][limit]=ntot=tot;
	fr2[k][res][limit]=nsum=sum;
}

void dfsl(int k,int res,bool limit)//dfsl的解释和dfsr大致相同
{
	if(res>maxn[k-p])
	{
		ntot=nsum=0;
		return;
	}
	if(k==p)
	{
		if(limit&&x>num[p])//注意判断x是否超出上限
		{
			ntot=nsum=0;
			return;
		}
		dfsr(p-1,r,limit&&(x==num[p]));
		return;
	}
	if(fl1[k][res][limit]!=-1)
	{
		ntot=fl1[k][res][limit];
		nsum=fl2[k][res][limit];
		return;
	}
	int t=K-1;
	if(limit) t=num[k];
	ll tot=0,sum=0;
	for(int i=0;i<=t;i++)
	{
		if(res-i>=0)
		{
			dfsl(k-1,res-i,limit&&(i==t));
			tot+=ntot,sum+=nsum;
			sum+=1ll*ntot*(k-p)*i;
		}
		else break;
	}
	fl1[k][res][limit]=ntot=tot;
	fl2[k][res][limit]=nsum=sum;
}

ll work(ll n)
{
	int len=0;
	while(n)
	{
		num[++len]=n%K;
		n/=K;
	}
	for(int i=1;i<=len+1;i++)
		maxn[i]=maxn[i-1]+(K-1);
	ll ans=0;
	for(p=1;p<=len;p++)
	{
		memset(fr1,-1,sizeof(fr1));//fr只与p有关,所以在p改变的时候再重置
		for(x=0;x<K;x++)
		{
			for(r=0;r<=maxn[p-1];r++)
			{
				memset(fl1,-1,sizeof(fl1));//fl只与p和r有关
				for(l=max(0,r-x);l<=min(r+x-1,maxn[len-p]);l++)//-x<=l-r<x,注意右边是小于,因为一个数有可能有两个最优决策点,我们要通过这种方式去重
				{
					dfsl(len,l,1);
					ans+=nsum;
				}
			}
		}
	}
	return ans;
}

int main()
{
	scanf("%lld%lld%d",&L,&R,&K);
	printf("%lld\n",work(R)-work(L-1));
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值