【CFgym102870J】Junction of Orz Pandas(思维,容斥)

暴力做法就不会做……

考虑容斥,用所有数 ≤ a i \leq a_i ai 的方案减去所有数 < a i <a_i <ai 的方案得到最大值为 a i a_i ai 的方案, b i b_i bi 同理容斥,时间复杂度 O ( 2 n + m n m ) O(2^{n+m}nm) O(2n+mnm)

直接在容斥上优化是没有前途的,考虑换一种思路。

发现我们交换两行或交换两列并不影响答案,那我们不妨将 a i a_i ai b i b_i bi 从小到大排序。

我们先取出 v v v 为所有 a i a_i ai b i b_i bi 的最小值,假设有 x x x a i a_i ai 等于 v v v y y y b i b_i bi 等于 v v v

在这里插入图片描述

显然红色部分都需要满足 ≤ v \leq v v,那么无论红色部分怎么取值都对第 x + 1 ∼ n x+1\sim n x+1n 列、第 y + 1 ∼ m y+1\sim m y+1m 行是否满足限制没有任何影响,于是我们可以对红色部分单独处理,对绿色部分继续递归处理。那么我们就能将原来的矩形分成很多个 L 字形,每个 L 字形分别统计方案数,最后再乘起来即可。

接下来是单独对每个 L 字形统计方案数,这个时候就能用一开始讲的容斥做法了:
∑ i = 0 x ∑ j = 0 y ( x i ) ( y j ) ( − 1 ) i + j v ( m x + n y − x y ) − ( m i + n j − i j ) ( v − 1 ) m i + n j − i j \sum_{i=0}^{x}\sum_{j=0}^y\binom{x}{i}\binom{y}{j}(-1)^{i+j}v^{(mx+ny-xy)-(mi+nj-ij)}(v-1)^{mi+nj-ij} i=0xj=0y(ix)(jy)(1)i+jv(mx+nyxy)(mi+njij)(v1)mi+njij
观察到将常数和只跟 i i i 有关的部分提到前面去后,后面剩下来的是个 ∑ j = 0 y ( y j ) A y − j B j \sum_{j=0}^{y}\binom{y}{j}A^{y-j}B^j j=0y(jy)AyjBj 的形式,为二项式展开,可以快速幂 O ( log ⁡ y ) O(\log y) O(logy) 求。

所以求一次 L 字形是 O ( x log ⁡ y ) O(x\log y) O(xlogy) 的。总时间复杂度 O ( n log ⁡ n ) O(n\log n) O(nlogn)

#include<bits/stdc++.h>

#define N 100010
#define ll long long

using namespace std;

namespace modular
{
	const int mod=998244353;
	inline int add(int x,int y){return x+y>=mod?x+y-mod:x+y;}
	inline int dec(int x,int y){return x-y<0?x-y+mod:x-y;}
	inline int mul(int x,int y){return 1ll*x*y%mod;}
	inline void Add(int &x,int y){x=x+y>=mod?x+y-mod:x+y;}
	inline void Mul(int &x,int y){x=1ll*x*y%mod;}
}using namespace modular;

inline int poww(int a,ll b)
{
	int ans=1;
	while(b)
	{
		if(b&1) ans=mul(ans,a);
		a=mul(a,a);
		b>>=1;
	}
	return ans;
}

inline int read()
{
	int x=0,f=1;
	char ch=getchar();
	while(ch<'0'||ch>'9')
	{
		if(ch=='-') f=-1;
		ch=getchar();
	}
	while(ch>='0'&&ch<='9')
	{
		x=(x<<1)+(x<<3)+(ch^'0');
		ch=getchar();
	}
	return x*f;
}

int n,m,t,a[N],b[N];
int fac[N],ifac[N];

int C(int n,int m)
{
	return mul(mul(fac[n],ifac[m]),ifac[n-m]);
}

int main()
{
	n=read(),m=read(),t=max(n,m);
	fac[0]=1;
	for(int i=1;i<=t;i++) fac[i]=mul(fac[i-1],i);
	ifac[t]=poww(fac[t],mod-2);
	for(int i=t;i>=1;i--) ifac[i-1]=mul(ifac[i],i);
	for(int i=1;i<=n;i++) a[i]=read();
	for(int i=1;i<=m;i++) b[i]=read();
	sort(a+1,a+n+1),reverse(a+1,a+n+1);
	sort(b+1,b+m+1),reverse(b+1,b+m+1);
	int ans=1;
	while(n&&m)
	{
		int v=min(a[n],b[m]);
		int x=0,y=0;
		while(x<n&&a[n-x]==v) x++;
		while(y<m&&b[m-y]==v) y++;
		v%=mod;
		int sum=0;
		const int div=mul(dec(v,1),poww(v,mod-2));
		for(int i=0;i<=x;i++)
		{
			int tmp=mul((i&1)?mod-1:1,mul(C(x,i),poww(div,1ll*m*i)));
			Mul(tmp,poww(dec(1,poww(div,n-i)),y));
			Add(sum,tmp);
		}
		Mul(ans,mul(sum,poww(v,1ll*m*x+1ll*n*y-1ll*x*y)));
		n-=x,m-=y;
	}
	if(n||m)
	{
		puts("0");
		return 0;
	}
	printf("%d\n",ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值