XSY 押题!/se
对于一类问题:
有 n n n 种不同的饮料,第 i i i 种有 a i a_i ai 升。你需要把它们分到 m m m 个瓶子里面,每个瓶子容量为 k k k,你的分配方案需要满足:
- 每个瓶子都被装满,题目保证满足 m k = ∑ a i mk=\sum a_i mk=∑ai。
- 每个瓶子内至多有两种饮料。
求出任意一组合法的方案或判定无解。
为了方便,我们将当前情况下的所有饮料按 a a a 从小到大排序。
引理1:当 m = n − 1 m=n-1 m=n−1 时一定有解。
首先由于 m < n m<n m<n,所以必然有 a 1 < k a_1<k a1<k。
发现此时
a
1
+
a
n
a_1+a_n
a1+an 必定大于等于
k
k
k,否则:
a
1
+
a
n
<
k
→
∀
i
,
a
i
<
k
→
∑
i
=
2
n
−
1
a
i
<
(
n
−
2
)
k
→
∑
i
=
1
n
a
i
<
(
n
−
1
)
k
\begin{aligned} &a_1+a_n<k\\ \to &\forall i,a_i<k\\ \to &\sum_{i=2}^{n-1}a_i<(n-2)k\\ \to &\sum_{i=1}^n a_i<(n-1)k \end{aligned}
→→→a1+an<k∀i,ai<ki=2∑n−1ai<(n−2)ki=1∑nai<(n−1)k
所以我们可以用完
a
1
a_1
a1,然后用
a
n
a_n
an 填充剩下的
k
−
a
1
k-a_1
k−a1。此时瓶子数量
m
m
m 减一,饮料数量
n
n
n 减一或减二,继续进入到
m
=
n
−
1
m=n-1
m=n−1 或
m
=
n
m=n
m=n 的情况。
引理 2:当 m ≥ n m\geq n m≥n 时一定有解。
由于 m ≥ n m\geq n m≥n,所以必然有 a n ≥ k a_n\geq k an≥k。所以我们可以单独用 a n a_n an 来填充一瓶,此时瓶子数量 m m m 减一,饮料数量 n n n 不变或减一,进入到 m ≥ n m\geq n m≥n 或 m = n − 1 m=n-1 m=n−1 的情况。
引理 3:当 m < n − 1 m<n-1 m<n−1 时有解,当且仅当能将所有饮料分成 n − m n-m n−m 组,使得每一组的饮料集合 T T T 都满足 ∑ i ∈ T a i = ( ∣ T ∣ − 1 ) k \sum _{i\in T} a_i=(|T|-1)k ∑i∈Tai=(∣T∣−1)k。
充分性:显然,因为每一组都是 m = n − 1 m=n-1 m=n−1 的情况。
必要性:考虑证明每一种合法的方案都会被统计到。
考虑建立一张图,点集为每一种饮料,然后对于每一个瓶子,在瓶子中两种饮料之间连一条边(只有一种饮料就连自环),这样会连出来一张 n n n 个点 m m m 条边的非简单图,记 − X = m − n -X=m-n −X=m−n。
考虑每一个连通块,每个连通块的 ∣ E ∣ − ∣ V ∣ |E|-|V| ∣E∣−∣V∣ 必定大于等于 − 1 -1 −1。
考虑往图中逐个加入每个连通块,并记录当前图中的 y = ∣ E ∣ − ∣ V ∣ y=|E|-|V| y=∣E∣−∣V∣。发现由于每加入一个连通块 y y y 至多减少 1 1 1,所以 y y y 的变化过程肯定可以被表示成: 0 , ⋯ , − 1 , ⋯ , − 2 , ⋯ , − X + 1 , ⋯ , − X 0,\cdots,-1,\cdots,-2,\cdots,-X+1,\cdots,-X 0,⋯,−1,⋯,−2,⋯,−X+1,⋯,−X,那么就容易分成 X X X 部分,每部分都是 m = n − 1 m=n-1 m=n−1 的集合了。
于是当 m ≥ n − 1 m\geq n-1 m≥n−1 的时候我们可以直接特判掉,否则问题变为:判定是否有一种分组方式使得分成 n − m n-m n−m 组且每一组的饮料集合 T T T 都满足 ∑ i ∈ T a i = ( ∣ T ∣ − 1 ) k \sum _{i\in T} a_i=(|T|-1)k ∑i∈Tai=(∣T∣−1)k,并求出分组方案。
先转化一下变成 ∑ i ∈ T a i − k = − k \sum_{i\in T}a_i-k=-k ∑i∈Tai−k=−k,令 a i ← a i − k a_i\gets a_i-k ai←ai−k,现在每一组的要求就是 ∑ i ∈ T a i = − k \sum_{i\in T}a_i=-k ∑i∈Tai=−k。
考虑 DP,朴素的子集 DP 可以做到 O ( 3 n ) O(3^n) O(3n)。
更加优秀的做法:暴力的思路是枚举每一种加入饮料的顺序,如果当前还未确定分组的饮料 a i a_i ai 的和为 − k -k −k 就贪心地把它们划为一组。看是否存在一种顺序使得某一时刻组数达到 n − m n-m n−m(此时还未加入的饮料的 a i a_i ai 的和一定是 0 0 0,把它们并入这一组即可)。这样做是正确的,因为我们枚举了每一种加入饮料的顺序,而若存在一种合法的方案,则一定存在一种加入顺序满足这个贪心正确(只需按组将所有饮料依次加入即可)。使用状压 DP 优化顺序的枚举即可做到 O ( 2 n n ) O(2^nn) O(2nn)。
【NOI2020】制作菜品,这题是分成两组,可以背包做到更优复杂度:
#include<bits/stdc++.h>
#define N 510
#define K 5010
#define fi first
#define se second
#define pii pair<int,int>
#define mk(a,b) make_pair(a,b)
using namespace std;
inline int read()
{
int x=0,f=1;
char ch=getchar();
while(ch<'0'||ch>'9')
{
if(ch=='-') f=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9')
{
x=(x<<1)+(x<<3)+(ch^'0');
ch=getchar();
}
return x*f;
}
int T,n,m,k,d[N];
bool vis[N];
set<pii>s;
vector<pii>ans;
bitset<N*K*2>f[N];
void work()
{
while(!s.empty())
{
pii maxn=*(--s.end());
pii minn=*s.begin();
if(minn.fi+maxn.fi<k) break;
m--;
if(minn.fi>=k)
{
s.erase(maxn);
ans.push_back(mk(maxn.se,k));
maxn.fi-=k;
if(maxn.fi) s.insert(maxn);
}
else
{
s.erase(minn);
s.erase(maxn);
ans.push_back(mk(minn.se,minn.fi));
ans.push_back(mk(maxn.se,k-minn.fi));
maxn.fi-=(k-minn.fi);
if(maxn.fi) s.insert(maxn);
}
}
}
int main()
{
// freopen("dish3.in","r",stdin);
// freopen("dish3.out","w",stdout);
T=read();
while(T--)
{
ans.clear();
n=read(),m=read(),k=read();
for(int i=1;i<=n;i++) d[i]=read();
if(m==n-2)
{
s.clear();
for(int i=1;i<=n;i++) vis[i]=0;
bool flag=0;
f[0].reset();
f[0].set(n*k);
for(int i=1;i<=n;i++)
{
f[i]=f[i-1];
if(d[i]-k>=0) f[i]|=(f[i-1]<<(d[i]-k));
else f[i]|=(f[i-1]>>(k-d[i]));
if(f[i][n*k-k])
{
s.clear();
int ns=n*k-k;
for(int j=i;j>=1;j--)
{
if(!f[j-1][ns])
{
vis[j]=1;
s.insert(mk(d[j],j));
ns-=d[j]-k;
assert(f[j-1][ns]);
}
}
work();
assert(s.empty());
for(int j=1;j<=n;j++)
if(!vis[j]) s.insert(mk(d[j],j));
work();
assert(s.empty());
flag=1;
break;
}
}
if(!flag)
{
puts("-1");
continue;
}
}
else
{
s.clear();
for(int i=1;i<=n;i++) s.insert(mk(d[i],i));
work();
}
bool lst=0;
for(pii now:ans)
{
if(lst) printf("%d %d\n",now.fi,now.se),lst=0;
else if(now.se==k) printf("%d %d\n",now.fi,now.se);
else printf("%d %d ",now.fi,now.se),lst=1;
}
}
return 0;
}
#include<bits/stdc++.h>
#define N 25
#define PN 3000000
#define ll long long
#define INF 0x7fffffff
#define lowbit(x) (x&-x)
using namespace std;
inline int read()
{
int x=0,f=1;
char ch=getchar();
while(ch<'0'||ch>'9')
{
if(ch=='-') f=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9')
{
x=(x<<1)+(x<<3)+(ch^'0');
ch=getchar();
}
return x*f;
}
int f[PN];
int n,aa[N],pos[PN];
ll S,a[N],sum[PN];
int main()
{
// freopen("drink4.in","r",stdin);
// freopen("drink4.out","w",stdout);
n=read();
for(int i=1;i<=n;i++) aa[i]=read(),S+=aa[i],pos[1<<(i-1)]=i;
int maxn=(1<<n)-1;
for(int A=(n+1)>>1;A<=n+1;A++)
{
for(int i=1;i<=n;i++) a[i]=1ll*aa[i]*A-S;
sum[0]=0;
for(int i=1;i<=maxn;i++)
{
int t=lowbit(i);
sum[i]=sum[i^t]+a[pos[t]];
}
for(int i=1;i<=maxn;i++) f[i]=-INF;
f[0]=0;
for(int i=0;i<maxn;i++)
{
ll res=sum[i]+f[i]*S;
for(int j=1;j<=n;j++)
{
if(!((i>>(j-1))&1))
{
if(res+a[j]==-S) f[i|(1<<(j-1))]=max(f[i|(1<<(j-1))],f[i]+1);
else f[i|(1<<(j-1))]=max(f[i|(1<<(j-1))],f[i]);
}
}
}
if(f[maxn]>=n-A)
{
printf("%d\n",A);
return 0;
}
}
return 0;
}