【XSY3527】饮料/【NOI2020】制作菜品

XSY 押题!/se

对于一类问题:

n n n 种不同的饮料,第 i i i 种有 a i a_i ai 升。你需要把它们分到 m m m 个瓶子里面,每个瓶子容量为 k k k,你的分配方案需要满足:

  • 每个瓶子都被装满,题目保证满足 m k = ∑ a i mk=\sum a_i mk=ai
  • 每个瓶子内至多有两种饮料。

求出任意一组合法的方案或判定无解。

为了方便,我们将当前情况下的所有饮料按 a a a 从小到大排序。

引理1:当 m = n − 1 m=n-1 m=n1 时一定有解。

首先由于 m < n m<n m<n,所以必然有 a 1 < k a_1<k a1<k

发现此时 a 1 + a n a_1+a_n a1+an 必定大于等于 k k k,否则:
a 1 + a n < k → ∀ i , a i < k → ∑ i = 2 n − 1 a i < ( n − 2 ) k → ∑ i = 1 n a i < ( n − 1 ) k \begin{aligned} &a_1+a_n<k\\ \to &\forall i,a_i<k\\ \to &\sum_{i=2}^{n-1}a_i<(n-2)k\\ \to &\sum_{i=1}^n a_i<(n-1)k \end{aligned} a1+an<ki,ai<ki=2n1ai<(n2)ki=1nai<(n1)k
所以我们可以用完 a 1 a_1 a1,然后用 a n a_n an 填充剩下的 k − a 1 k-a_1 ka1。此时瓶子数量 m m m 减一,饮料数量 n n n 减一或减二,继续进入到 m = n − 1 m=n-1 m=n1 m = n m=n m=n 的情况。

引理 2:当 m ≥ n m\geq n mn 时一定有解。

由于 m ≥ n m\geq n mn,所以必然有 a n ≥ k a_n\geq k ank。所以我们可以单独用 a n a_n an 来填充一瓶,此时瓶子数量 m m m 减一,饮料数量 n n n 不变或减一,进入到 m ≥ n m\geq n mn m = n − 1 m=n-1 m=n1 的情况。

引理 3:当 m < n − 1 m<n-1 m<n1 时有解,当且仅当能将所有饮料分成 n − m n-m nm 组,使得每一组的饮料集合 T T T 都满足 ∑ i ∈ T a i = ( ∣ T ∣ − 1 ) k \sum _{i\in T} a_i=(|T|-1)k iTai=(T1)k

充分性:显然,因为每一组都是 m = n − 1 m=n-1 m=n1 的情况。

必要性:考虑证明每一种合法的方案都会被统计到。

考虑建立一张图,点集为每一种饮料,然后对于每一个瓶子,在瓶子中两种饮料之间连一条边(只有一种饮料就连自环),这样会连出来一张 n n n 个点 m m m 条边的非简单图,记 − X = m − n -X=m-n X=mn

考虑每一个连通块,每个连通块的 ∣ E ∣ − ∣ V ∣ |E|-|V| EV 必定大于等于 − 1 -1 1

考虑往图中逐个加入每个连通块,并记录当前图中的 y = ∣ E ∣ − ∣ V ∣ y=|E|-|V| y=EV。发现由于每加入一个连通块 y y y 至多减少 1 1 1,所以 y y y 的变化过程肯定可以被表示成: 0 , ⋯   , − 1 , ⋯   , − 2 , ⋯   , − X + 1 , ⋯   , − X 0,\cdots,-1,\cdots,-2,\cdots,-X+1,\cdots,-X 0,,1,,2,,X+1,,X,那么就容易分成 X X X 部分,每部分都是 m = n − 1 m=n-1 m=n1 的集合了。

于是当 m ≥ n − 1 m\geq n-1 mn1 的时候我们可以直接特判掉,否则问题变为:判定是否有一种分组方式使得分成 n − m n-m nm 组且每一组的饮料集合 T T T 都满足 ∑ i ∈ T a i = ( ∣ T ∣ − 1 ) k \sum _{i\in T} a_i=(|T|-1)k iTai=(T1)k,并求出分组方案。

先转化一下变成 ∑ i ∈ T a i − k = − k \sum_{i\in T}a_i-k=-k iTaik=k,令 a i ← a i − k a_i\gets a_i-k aiaik,现在每一组的要求就是 ∑ i ∈ T a i = − k \sum_{i\in T}a_i=-k iTai=k

考虑 DP,朴素的子集 DP 可以做到 O ( 3 n ) O(3^n) O(3n)

更加优秀的做法:暴力的思路是枚举每一种加入饮料的顺序,如果当前还未确定分组的饮料 a i a_i ai 的和为 − k -k k 就贪心地把它们划为一组。看是否存在一种顺序使得某一时刻组数达到 n − m n-m nm(此时还未加入的饮料的 a i a_i ai 的和一定是 0 0 0,把它们并入这一组即可)。这样做是正确的,因为我们枚举了每一种加入饮料的顺序,而若存在一种合法的方案,则一定存在一种加入顺序满足这个贪心正确(只需按组将所有饮料依次加入即可)。使用状压 DP 优化顺序的枚举即可做到 O ( 2 n n ) O(2^nn) O(2nn)

【NOI2020】制作菜品,这题是分成两组,可以背包做到更优复杂度:

#include<bits/stdc++.h>

#define N 510
#define K 5010
#define fi first
#define se second
#define pii pair<int,int>
#define mk(a,b) make_pair(a,b)

using namespace std;

inline int read()
{
	int x=0,f=1;
	char ch=getchar();
	while(ch<'0'||ch>'9')
	{
		if(ch=='-') f=-1;
		ch=getchar();
	}
	while(ch>='0'&&ch<='9')
	{
		x=(x<<1)+(x<<3)+(ch^'0');
		ch=getchar();
	}
	return x*f;
}

int T,n,m,k,d[N];
bool vis[N];

set<pii>s;
vector<pii>ans;
bitset<N*K*2>f[N];

void work()
{
	while(!s.empty())
	{
		pii maxn=*(--s.end());
		pii minn=*s.begin();
		if(minn.fi+maxn.fi<k) break;
		m--;
		if(minn.fi>=k)
		{
			s.erase(maxn);
			ans.push_back(mk(maxn.se,k));
			maxn.fi-=k;
			if(maxn.fi) s.insert(maxn);
		}
		else
		{
			s.erase(minn);
			s.erase(maxn);
			ans.push_back(mk(minn.se,minn.fi));
			ans.push_back(mk(maxn.se,k-minn.fi));
			maxn.fi-=(k-minn.fi);
			if(maxn.fi) s.insert(maxn);
		}
	}
}

int main()
{
//	freopen("dish3.in","r",stdin);
//	freopen("dish3.out","w",stdout);
	T=read();
	while(T--)
	{
		ans.clear();
		n=read(),m=read(),k=read();
		for(int i=1;i<=n;i++) d[i]=read();
		if(m==n-2)
		{
			s.clear();
			for(int i=1;i<=n;i++) vis[i]=0;
			bool flag=0;
			f[0].reset();
			f[0].set(n*k);
			for(int i=1;i<=n;i++)
			{
				f[i]=f[i-1];
				if(d[i]-k>=0) f[i]|=(f[i-1]<<(d[i]-k));
				else f[i]|=(f[i-1]>>(k-d[i]));
				if(f[i][n*k-k])
				{
					s.clear();
					int ns=n*k-k;
					for(int j=i;j>=1;j--)
					{
						if(!f[j-1][ns])
						{
							vis[j]=1;
							s.insert(mk(d[j],j));
							ns-=d[j]-k;
							assert(f[j-1][ns]);
						}
					}
					work();
					assert(s.empty());
					for(int j=1;j<=n;j++)
						if(!vis[j]) s.insert(mk(d[j],j));
					work();
					assert(s.empty());
					flag=1;
					break;
				}
			}
			if(!flag)
			{
				puts("-1");
				continue;
			}
		}
		else
		{
			s.clear();
			for(int i=1;i<=n;i++) s.insert(mk(d[i],i));
			work();
		}
		bool lst=0;
		for(pii now:ans)
		{
			if(lst) printf("%d %d\n",now.fi,now.se),lst=0;
			else if(now.se==k) printf("%d %d\n",now.fi,now.se);
			else printf("%d %d ",now.fi,now.se),lst=1;
		}
	}
	return 0;
}

【XSY3527】饮料

#include<bits/stdc++.h>

#define N 25
#define PN 3000000
#define ll long long
#define INF 0x7fffffff
#define lowbit(x) (x&-x)

using namespace std;

inline int read()
{
	int x=0,f=1;
	char ch=getchar();
	while(ch<'0'||ch>'9')
	{
		if(ch=='-') f=-1;
		ch=getchar();
	}
	while(ch>='0'&&ch<='9')
	{
		x=(x<<1)+(x<<3)+(ch^'0');
		ch=getchar();
	}
	return x*f;
}

int f[PN];
int n,aa[N],pos[PN];
ll S,a[N],sum[PN];

int main()
{
//	freopen("drink4.in","r",stdin);
//	freopen("drink4.out","w",stdout);
	n=read();
	for(int i=1;i<=n;i++) aa[i]=read(),S+=aa[i],pos[1<<(i-1)]=i;
	int maxn=(1<<n)-1;
	for(int A=(n+1)>>1;A<=n+1;A++)
	{
		for(int i=1;i<=n;i++) a[i]=1ll*aa[i]*A-S;
		sum[0]=0;
		for(int i=1;i<=maxn;i++)
		{
			int t=lowbit(i);
			sum[i]=sum[i^t]+a[pos[t]];
		}
		for(int i=1;i<=maxn;i++) f[i]=-INF;
		f[0]=0;
		for(int i=0;i<maxn;i++)
		{
			ll res=sum[i]+f[i]*S;
			for(int j=1;j<=n;j++)
			{
				if(!((i>>(j-1))&1))
				{
					if(res+a[j]==-S) f[i|(1<<(j-1))]=max(f[i|(1<<(j-1))],f[i]+1);
					else f[i|(1<<(j-1))]=max(f[i|(1<<(j-1))],f[i]);
				}
			}
		}
		if(f[maxn]>=n-A)
		{
			printf("%d\n",A);
			return 0;
		}
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值