【XSY4320】Catalan(组合意义,DP,多项式)

题面:

Catalan

题解:

假瑞的做法orz

考虑用组合意义来做,观察递推式 f i = 1 i ∑ j = 0 i − 1 f j f i − j − 1 f_i=\frac{1}{i}\sum_{j=0}^{i-1}f_jf_{i-j-1} fi=i1j=0i1fjfij1,它除了和卡特兰数递推式很像之外,还和二叉树计数的递推式很像。

同时注意到 f 0 = 0 f_0=0 f0=0,所以递推式可以变为 f i = 1 i ∑ j = 1 i − 2 f j f i − j − 1 f_i=\frac{1}{i}\sum_{j=1}^{i-2}f_jf_{i-j-1} fi=i1j=1i2fjfij1,即我们二叉树中每个非叶子节点都有恰好两个儿子,那么也可知 n n n 一定为奇数。下面 “完全二叉树” 的意义为每个非叶子节点都有恰好两个儿子的二叉树。

那么 f n f_n fn 就可以理解为枚举每一种完全二叉树,然后把 ∏ u 1 s z u \prod_{u}\frac{1}{sz_u} uszu1 的贡献统计进答案。

注意这里枚举的二叉树是无标号但是有左右儿子之分的,那么我们不妨将这棵二叉树上的点按 dfn 序标号。

发现 ∏ u 1 s z u \prod_u\frac{1}{sz_u} uszu1 就是这棵二叉树的拓扑序数量除以 n ! n! n!,那么现在的问题转变为:枚举每一种二叉树,然后把其拓扑序个数统计进答案。

考虑每个点 i i i(注意这里是按 dfn 序标号,上面已经说过了)在拓扑序中的位置 p o s i pos_i posi,发现对于每一种 1 ∼ n 1\sim n 1n 的排列,如果把它当做 p o s pos pos 序列的话,其唯一对应着一棵普通二叉树,即为这个排列的笛卡尔树。

但是还没完,这个 p o s pos pos 序列对应的不一定是一棵完全二叉树,我们只要那些完全二叉树的方案。

发现一棵树是完全二叉树当且仅当 dfn 序为奇数的点都是叶子,那么一个序列 p o s pos pos 是来自完全二叉树的当且仅当:
∀ i   m o d   2 = 1 , p o s i > p o s i − 1 ∧ p o s i > p o s i + 1 \forall i\bmod 2=1, pos_i>pos_{i-1}\land pos_i>pos_{i+1} imod2=1,posi>posi1posi>posi+1
完整写下来: p o s 1 > p o s 2 < p o s 3 > p o s 4 < ⋯ > p o s n − 1 < p o s n pos_1>pos_2<pos_3>pos_4<\cdots >pos_{n-1}<pos_n pos1>pos2<pos3>pos4<>posn1<posn。我们只需要求出满足该条件的排列个数即可。

考虑让所有大于号都满足,然后容斥哪些小于号不满足,那么就得到了若干段连续的大于号,即:
n ! ∑ s 1 + ⋯ + s m = n ( ∏ i = 1 m − 1 ( − 1 ) s i / 2 − 1 s i ! ) ( ( − 1 ) ( s m − 1 ) / 2 s m ! ) n!\sum_{s_1+\cdots+s_m=n}\left(\prod_{i=1}^{m-1}\frac{(-1)^{s_i/2-1}}{s_i!}\right)\left(\frac{(-1)^{(s_m-1)/2}}{s_m!}\right) n!s1++sm=n(i=1m1si!(1)si/21)(sm!(1)(sm1)/2)
其中要求 s 1 , ⋯   , s m − 1 s_1,\cdots,s_{m-1} s1,,sm1 为正偶数, s m s_m sm 为正奇数。

F ( x ) = ∑ i ≥ 1 , 2 ∣ i ( − 1 ) i / 2 − 1 i ! x i F(x)=\sum_{i\geq 1,2|i}\frac{(-1)^{i/2-1}}{i!}x^i F(x)=i1,2ii!(1)i/21xi G ( x ) = ∑ i ≥ 1 , 2 ∤ i ( − 1 ) ( i − 1 ) / 2 i ! x i G(x)=\sum_{i\geq 1,2\not|i}\frac{(-1)^{(i-1)/2}}{i!}x^i G(x)=i1,2ii!(1)(i1)/2xi,那么我们要求的就是:
[ x n ] G ( x ) 1 − F ( x ) [x^n]\frac{G(x)}{1-F(x)} [xn]1F(x)G(x)
时间复杂度 O ( n log ⁡ n ) O(n\log n) O(nlogn)

神奇的是,你发现 ∑ i ≥ 0 ( − 1 ) i / 2 i ! x i = cos ⁡ ( x ) \sum_{i\geq 0}\frac{(-1)^{i/2}}{i!}x^i=\cos(x) i0i!(1)i/2xi=cos(x) G ( x ) = sin ⁡ ( x ) G(x)=\sin (x) G(x)=sin(x),于是我们要求的其实是:
[ x n ] cos ⁡ ( x ) sin ⁡ ( x ) = [ x n ] tan ⁡ ( x ) [x^n]\frac{\cos(x)}{\sin(x)}=[x^n]\tan(x) [xn]sin(x)cos(x)=[xn]tan(x)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值