学习笔记
文章平均质量分 58
ezoiHY
一名混oi的大佬
展开
-
线段树_数据结构
没错则就是一个(过去的)线段树黑洞的线段树博客 线段树: 忠诚改 实际上这个线段树是十分的简(fu)单(za)的 分别有以下几个函数: build:构建整棵线段树 pushup:对于我们所要求的答案进行往上更新 pushdown:lazy标记下传 update:区间修改(可以当做单点修改用) query:区间查询(和,最值等) 所以这里每个节点可以维护一个值(如区间最值、和等...原创 2018-02-21 23:25:57 · 2950 阅读 · 0 评论 -
FFT快速傅里叶变换
FFT太玄幻了,不过我要先膜拜HQM,实在太强了 1.多项式 1)多项式的定义 在数学中,由若干个单项式相加组成的代数式叫做多项式。多项式中的每个单项式叫做多项式的项,这些单项式中的最高项次数,就是这个多项式的次数。其中多项式中不含字母的项叫做常数项。 2)多项式的表达 我们可以用一些不同的表达方式来表示一个多项式 f(x)=∑i=0i=nai⋅xif(x)=∑i=0i=n...原创 2018-08-17 08:31:58 · 367 阅读 · 0 评论 -
可持久化AC自动机
其实就是可持久化线段树的模板题 线段树不会看这里 #include<bits/stdc++.h> const int N=1000005; using namespace std; int a[N],n,m,q,rt[N*20]; int lc[N*20],rc[N*20],val[N*20],cnt; int rd(){ register int f=1,x=0;regi...原创 2018-08-17 08:30:33 · 766 阅读 · 2 评论 -
树形结构
树形结构 ———其实这是很简单又很难得一些东西 1 定义 树状图是一种数据结构,它是由n(n>=1)n(n>=1)n (n>=1)个有限节点组成一个具有层次关系的集合。把它叫做“树”是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。 树(tree)是包含n(n>0)n(n>0) n(n>0)个结点的有穷集,其中: 1)每个元素称为结点(node) ...原创 2018-08-16 08:24:22 · 3660 阅读 · 0 评论 -
dinic网络最大流
网络流是什么? 不急我们慢慢来讲。 首先我们先看看最大流 1.背景 管道网络中每条边的最大通过能力(容量)是有限的,实际流量不超过容量。最大流问题(maximum flow problem),一种组合最优化问题,就是要讨论如何充分利用装置的能力,使得运输的流量最大,以取得最好的效果。求最大流的标号算法最早由福特和福克逊与与1956年提出,20世纪50年代福特(Ford)、(Fulk...原创 2018-08-16 08:23:49 · 2686 阅读 · 0 评论 -
莫比乌斯反演
莫比乌斯反演是一个十分玄幻的东西,它可以把o(n2)o(n2)o(n^2)的时间复杂度降到o(nn−−√)o(nn)o(n\sqrt{n})甚至更低 1.公式 这是莫比乌斯反演最基本的东西,两个定义在正整数集上的函数F(n)F(n)F(n)和f(n)f(n)f(n) 若满足这个式子 F(n)=∑d|nf(d)F(n)=∑d|nf(d)F(n)=\sum_{d|n}f(d) 则会有 ...原创 2018-08-16 08:22:40 · 2724 阅读 · 0 评论 -
Lucas定
1.lucas定理的作用 lucas定理听起来很高级,实际上它只是用来求cmnmodpcnmmodpc_n^m \mod p,其中ppp是一个素数 2.lucas定理的表达式 Cmnmodp=Cm/pn/p∗CmmodpnmodpmodpCnmmodp=Cn/pm/p∗CnmodpmmodpmodpC_n^m \mod p=C_{n/p}^{m/p}*C_{n\mod p}^{m\mo...原创 2018-08-16 08:21:36 · 2606 阅读 · 0 评论 -
树形dp
我也很久没写树d了 今天切了4题,也就来写下博客 1.树形dp 这是一种在树上的dp,它与线性dp不同,与线性dp的顺序是不同的所以其实树形dp就是 树上dp是一种在树状结构上进行dp的一种,各个阶段呈现树状关系的时候也可以采用树形dp。 2.分类 其实这里也有很多类了,树上背包,删点或者删边类树形DP等等 3.实现 树d的实现其实大多数就是dfs了,对于树的操作也...原创 2018-08-15 19:26:11 · 2861 阅读 · 0 评论 -
复习1背包dp
背包问题是对于一个有限制的容器,一般计算可以装的物品的价值最值或数量。通常每个物品都有两个属性空间和价值,有时还有数量或别的限制条件,这个因体而异。 背包大概分成3部分,下面会细述这最经典的3种题型 1.01背包 这是背包中最经典的问题,也是下面两个问题的基础,01背包顾名思义,每种物品要么取,要么不取,也就是1或0。 看下例题Luogu P1164 小A点菜 题目背景 uim...原创 2018-08-15 19:24:59 · 3039 阅读 · 0 评论 -
复习2二分图匹配
我们现在讲下二分图匹配 1.什么是二分图 二分图又称作二部图,是图论中的一种特殊模型。 设G=(V,E)G=(V,E)G=(V,E)是一个无向图,如果顶点VVV可分割为两个互不相交的子集(A,B)(A,B)(A,B),并且图中的每条边(i,j)(i,j)(i,j)所关联的两个顶点i和j分别属于这两个不同的顶点集(i∈A,j∈B)(i∈A,j∈B)(i\in A,j\in B),则称图GGG...原创 2018-08-15 19:24:11 · 2791 阅读 · 0 评论 -
线段树标记永久化
线段树的标记永久化 其实线段树的标记永久化是一个非常容易理解的东西,往往我们都会在区间操作时打lazytag,但是在标记下放时会耗费大量的时间,所以我们可以尝试标记永久化,这样我们的就不用下放标记,同时代码也更加简洁,因为我们少了一个pushdown函数,同时出错率也会大大降低。 对于标记永久化,其实和普通线段树比起来,其实差不多 #include<iostream> #in...原创 2018-08-15 19:23:15 · 3284 阅读 · 0 评论 -
高斯消元
高斯消元其实就是一个极其靠意识的东西 我们都学过加减消元,在二元时这里其实是极其容易的,但是拓展到多元,我们就需要一种通解 这个东西我在数学课上都听过,我们在考试时也经常用,现在我们用计算机来做其实就更加简单了 以前我们往往是对于一个元两个不同的系数的两个式子,我们往往讲这个元的系数变为原来两个数的系数的最小公倍数,举个例子 {5a1−2a2=b12a1+3a2=b2{5a1−2a2=b1...原创 2018-08-15 19:22:32 · 2793 阅读 · 0 评论 -
复习3图的全家桶
图论还是来个全家桶吧,其实图论这种东西还是蛮好理解的 -1.什么是图 图(Graph)是表示物件与物件之间的关系的数学对象,是图论的基本研究对象。一个不带权图中若两点不相邻,邻接矩阵相应位置为0,对带权图(网),相应位置为∞。 有向图与无向图 如果给图的每条边规定一个方向,那么得到的图称为有向图。在有向图中,与一个节点相关联的边有出边和入边之分。相反,边没有方向的图称为无向图。 ...原创 2018-08-15 19:20:57 · 2793 阅读 · 0 评论 -
深度优先搜索DFS
深度优先搜索也就是DFS,使我们oi竞赛中使用的最多的算法之一 我们今天就来看下这个神奇的算法 1.什么是DFS 事实上,深度优先搜索属于图算法的一种,英文缩写为DFS即Depth First Search.其过程简要来说是对每一个可能的分支路径深入到不能再深入为止,而且每个节点只能访问一次 2.DFS有什么用 其实这个DFS往往用来遍历一幅图,在树剖、网络流等算法中会用到。它还...原创 2018-04-26 13:50:25 · 2662 阅读 · 0 评论 -
斯特林数_数学
斯特林数有两类 第一类是:[nk][nk]\left[\begin{array}{c}n\\k\end{array}\right]表示nn不同元素分为kk个非空环排列的方案数。 第二类是:{nk}{nk}\left\{\begin{array}{c}n\\k\end{array}\right\}表示nn不同元素分为kk个非空集合的方案数。...原创 2018-04-21 09:08:11 · 2717 阅读 · 0 评论