【AtCoder】 AtCoder Beginner Contest 103 (ABC103)

本文详细介绍了AtCoder Beginner Contest 103 (ABC103)的比赛经历,包括A、B、C、D四道题目的题意、解题思路和代码实现。作者分享了在解决C题时受到启发,利用最小公倍数求解最大值的策略,以及D题使用贪心算法处理链状结构问题的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先上一张最终结果的图吧:

感觉AtCoder的ABC还是比较练手的,考验代码速度,网速,D题还会有一些思维难度。

这次ABC由于网络原因,很迟才看到题,但完成得还是不错的。

题解:

A

题意:给你三个都需要被完成的任务的难度a,b,c,均为1至100的正整数。

首先,你可以用0的花费完成任何一个任务。

如果你完成了一个任务,那么你可以完成另一个任务,花费是两个任务的难度的差的绝对值。

题解:利用绝对值的几何意义可以发现,最优解一定是选择难度在中间的那个任务完成,然后再完成另外两个任务。

那么最终的花费一定是难度最大的任务的难度减去难度最小的任务的难度。

代码:

#include <bits/stdc++.h>
using namespace std;

int main()
{
	int a,b,c;
	cin >> a >> b >> c;
	cout << max(max(a,b),c)-min(min(a,b),c) << endl;
}

B

题意:给你字符串ST,每次可以对S串进行一种操作:将S串的最后一个字符取出,扔到最前面去。

问是否能将S串变为T串。

S串和T串的长度均小于或等于100且相等。

题解:显然暴力执行操作,暴力判断。

代码:

#include <bits/stdc++.h>
using namespace std;

int main()
{
	string s,t;
	cin >> s >> t;
	for(int i=0;i<s.length();++i)
	{
		char c=s[s.length()-1];
		string tmp=s;
		s.pop_back();
		s.insert(s.begin(),c);
		if(s==t)
		{
			puts("Yes");
			return 0;
		}
	}
	puts("No");
}

C

题意:给你N个正整数a_{1},a_{2},a_{3},...,a_{N},我们定义

f(m)=(m \bmod a_{1})+(m \bmod a_{2})+(m \bmod a_{3})+...+(m \bmod a_{n})

其中m为自然数。

f(m)的最大值。

2 \leq N \leq 30002 \leq a_{i} \leq 10^5

题解:首先这道题求的是最大值(最小值显然为0),容易想到暴力枚举m,但显然会超时。

细心的读者也许发现了,我C题的通过时间比B题早将近7分钟,原因竟然是:

当我码着B题,想着C题的时候,隔壁一名大佬(STO yeh)突然说了声最小公倍数。

我一想,m取所有数的最小公倍数减一,那么。。。。。

那么C题比B题好码多了,于是码了C,于是C题便比B早提交。。。别问我为什么还过了7分钟才交B

证明:这个不需要证明吧。。。。

代码:

#include<bits/stdc++.h>
using namespace std;

int main()
{
	int n,x,sum=0;
	scanf("%d",&n);
	for(int i=1;i<=n;++i)
	{
		scanf("%d",&x);
		sum+=x-1;
	}
	printf("%d\n",sum);
}

的确比B好码得多啊。。。。

D

没错又是一道有思维难度的题目(大佬除外)。

题意:给你一条n个点的链,点按顺序标号为1n,然后输入一些点对,让你删边,使得这些点对都不连通,求最少删边数量。

2\leq N \leq 10^51\leq M\leq 10^51\leq ai< bi\leq N

题解:在这道题上卡了很久。

其实不应该卡那么久,因为曾经做过这道题的树上版本,但由于那道题是删点,所以一开始以为不适用,但是后来想了一想,其实可以套用。

方法就是:将所有区间按照右端点的大小排序(从小到大),然后对于一个区间,若它当前未被切断,则切断它最右的一条边。

证明:用类似归纳法的思想,对于右端点最小(最左)的区间,它一定要被切断,为了“惠及”尽可能多的区间,切断它最右的一条边。为什么最优呢,因为这是它已经是右端点最左的区间了,因此只有切断最右的那条边,才能切断最多的区间。

于是我们排除掉已经被切断的区间,再次找到右端点最小的未被切断的区间,由于前面的决策是最优的(已证明),我们可以忽略掉那些区间。此时,切断该区间最右的边一定是最优的,证法同上。

拓展:关于树上的做法(那道题是删点),将所有点对的lca按照深度排序,从深度大的点往深度小的点删,证法类似,不详细展开,有兴趣的读者可以自行查阅资料。

代码:

#include <bits/stdc++.h>
using namespace std;

#define MAXN 100001

struct data{
	int a,b;
	bool operator<(const data &d)const{
		return b<d.b;
	}
}a[MAXN];

int n,m;

int main()
{
	scanf("%d%d",&n,&m);
	for(int i=1;i<=m;++i)
	{
		scanf("%d%d",&a[i].a,&a[i].b);
	}
	sort(a+1,a+m+1);
	int now=0,ans=0;
	for(int i=1;i<=m;++i)
	{
		if(now<=a[i].a)
		{
			now=a[i].b;
			++ans;
		}
	}
	printf("%d\n",ans);
}

 

### 回答1: atcoder beginner contest 235 是一场由 AtCoder 组织的初学者比赛,旨在为初学者提供一个锻炼自己编程能力的平台。比赛通常包括多个问题,参赛者需要在规定时间内解决这些问题。比赛难度逐渐增加,从而帮助参赛者提高自己的编程技能。 ### 回答2: ATCoder Beginner Contest 235(简称ABC 235)是一项由ATCoder举办的编程竞赛。该比赛旨在为初学者提供一个机会展示他们的编程技巧解决问题的能力。 ABC 235通常由4个问题组成,题目难度递增。参赛者需要在规定的时间内使用编程语言解决这些问题。这些问题通常涵盖了各种编程相关的主题,例如数学问题、字符串处理、排序搜索算法等。 在比赛开始前,参赛者将获得一份题目说明文档输入样例。他们需要根据题目要求编写程序,处理给定的输入数据,并生成相应的输出。比赛时间一般为2-3小时,参赛者需要尽可能快速且准确地解决问题。 评判将根据参赛者的程序输出与预期结果的一致性进行。参赛者可以在比赛过程中提交多次解答,但只有第一次正确答案会被记入最终的成绩。 ABC 235不仅提供了一个竞赛平台,还鼓励参赛者通过讨论分享解题思路来学习提高。在比赛结束后,ATCoder将提供详细的解题分析解题报告,帮助参赛者了解每个题目的最佳解决方法,并提供参考答案示例代码。 通过参加ATCoder Beginner Contest 235,参赛者可以提升他们的编程技能,锻炼逻辑思维能力,并与全球的编程爱好者交流。无论是初学者还是有经验的编程者,ABC 235都是一个很好的学习挑战的机会。 ### 回答3: AtCoder Beginner Contest 235 是一个在 AtCoder 上的初级比赛。该比赛通常会吸引很多新手程序员参加。它由 AtCoder 组织主办,旨在帮助新手提高编程技能以及在竞赛中锻炼自己。 比赛的题目难度由易到难,共有四个问题。通常,第一个问题是一个简单的数学问题,要求解决一个简单的算术运算。第二个问题可能是一个字符串操作问题,需要对给定的字符串进行处理。第三个问题可能是一个动态规划或贪心算法问题,需要细心分析问题,找出最优解。最后一个问题通常是一个较难的图论或组合问题,需要一些高级算法来解决。 参赛选手在比赛开始后有一定的时间限制来解决这些问题。他们可以使用自己熟悉的编程语言来实现解决方案。然后他们将自己的程序提交到 AtCoder 的在线评测系统中进行评测。评测结果会即时显示,并将参赛选手的成绩排名讨论解答过程的视频分享给其他选手。 参加 AtCoder Beginner Contest 235 对于新手来说是一个很好的机会。通过解决这些问题,他们可以练习编程技巧,提高解决问题的能力。比赛结束后,他们还可以看到其他选手的解答,学习他们的思路方法。同时,比赛的排名奖励也是一种鼓励激励新手继续努力学习的方式。 总之,AtCoder Beginner Contest 235 是一个对于新手非常友好的比赛,它提供了一个锻炼展示编程技能的平台。无论是对于新手还是更有经验的选手,参加这样的比赛都是一个宝贵的机会。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值