【黑马计划-1】KMP及扩展KMP

KMP

核心

玄学 fail f a i l 数组
fail f a i l 数组的含义即是某段字符串的最长公共前后缀。
具体来讲,设 T[1j1]=T[iji1](ji) T [ 1 … j − 1 ] = T [ i − j … i − 1 ] ( j ⩽ i ) ,那么 fail[i] f a i l [ i ] j j 的最大值。

那么这个 fail 有什么用呢?见下图。
发生失配时,当前指针从 $i$ 跳到 $fail[i]$
匹配时,设当前匹配到 S S 的第 i 位, T T 的第 j 位,即 S[ij+1i1] S [ i − j + 1 … i − 1 ] T[1j1] T [ 1 … j − 1 ] 已成功匹配。当 j j 指针这一位发生失配,意味着 S[i]!=T[j] ,这时根据 fail f a i l 数组的定义,由于 T[1fail[j]1]=T[jfail[j]j1] T [ 1 … f a i l [ j ] − 1 ] = T [ j − f a i l [ j ] … j − 1 ] ,因此若将 j j 指针指向 fail[j] ,我们可以直接跳过对 T[1fail[j]1] T [ 1 … f a i l [ j ] − 1 ] 的匹配。

复杂度证明

n n 为串 S 的长度, m m 为串 T 的长度。
i i 指针全程只增,这里的复杂度为 O(n)
j j 指针全程只有两种跳法: jj+1 jfail[j] j → f a i l [ j ]
对于 jj+1 j → j + 1 全程最多跳 n n 次。
对于 jfail[j]
i i 保持不变的情况下, j 跳至下界的极限次数一定不超过 j j (根据 fail 的定义)。因此设 f[j] f [ j ] 表示 j j 这个位置发生失配跳至下界的上限次数, g[j] 为跳完 f[j] f [ j ] 次之后 j j 的位置。而 j 每跳一次, g[j] g [ j ] 一定减小至少 1 1 f[j] 随之减小至少 1 1 ,从而最终跳的次数上界为 U=max{f[j]} 。由 f f 的定义我们知道, max{f[x]}=n ,故最终 j j 跳的次数一定不超过 n
又由于要单独对串 T T 单独求一次 fail ,复杂度证明同上,为 O(m) O ( m )
综上,由于 i i 全程迭代 n 次, j j 全程迭代不超过 n 次,故时间复杂度为 O(n+m) O ( n + m )

扩展KMP

“扩展”

引入 ext e x t 数组, ext[i] e x t [ i ] 表示 S[in] S [ i … n ] T[1m] T [ 1 … m ] 的最长公共前缀( n n 为串 S 的长度, m m 为串 T 的长度)。
考虑如何求 ext e x t

引入辅助工具

设当前需要计算 ext[i] e x t [ i ] 的值, p p ext[j] 最大时 j j 的值 (1j<i)
就有 S[pp+ext[p]1]=T[1ext[p]] S [ p … p + e x t [ p ] − 1 ] = T [ 1 … e x t [ p ] ]
于是 S[ip]=T[ext[p]p+iext[p]] S [ i … p ] = T [ e x t [ p ] − p + i … e x t [ p ] ]
这时求 ext e x t 就有两种情况:
1、 i+fail[i]<p+ext[p] i + f a i l [ i ] < p + e x t [ p ]
由于 S[ip]=T[ext[p]p+iext[p]] S [ i … p ] = T [ e x t [ p ] − p + i … e x t [ p ] ]
又由 fail f a i l 的定义知 S[ii+fail[ip+1]1]=T[1fail[ip+1]] S [ i … i + f a i l [ i − p + 1 ] − 1 ] = T [ 1 … f a i l [ i − p + 1 ] ] fail[ip+1] f a i l [ i − p + 1 ] 为最大匹配长度,故 ext[i]=fail[ip+1] e x t [ i ] = f a i l [ i − p + 1 ]
 $i+fail[i]<p+ext[p]$ ,红色两段完全相同

2、 i+fail[i]p+ext[p] i + f a i l [ i ] ≥ p + e x t [ p ]
此处求法与 fail f a i l 求法几乎一样,可参考 fail f a i l 的求值。

复杂度证明:对于情况1,单次复杂度为 O(1) O ( 1 ) ;对于情况2,总复杂度与KMP算法中一致,为 O(n+m) O ( n + m )

代码实现

#include<iostream>
#include<cstdio>
#include<cstring>

using namespace std;

const int LENGTH=1000000;
char S[LENGTH+2],T[LENGTH+2];

namespace KMP{
    int fail[LENGTH+2];
    int cnt[LENGTH+2],ext[LENGTH+2];
    void get_fail(char *t){
        int len=strlen(t+1);
        for(int i=2,j=0;i<=len;++i){
            while(j&&t[i]!=t[j+1])j=fail[j];
            if(t[i]==t[j+1])fail[i]=++j;
        }
    }
    void KMP(char *s,char *t){
        get_fail(t);
        int s_len=strlen(s+1),t_len=strlen(t+1);
        for(int i=1,j=0;i<=s_len;++i){
            while(j&&s[i]!=t[j+1])j=fail[j];
            if(s[i]==t[j+1]){
                cnt[i]=++j;
                if(j==t_len)j=fail[j];
            }
        }
    }
    void ex_KMP(char *s,char *t){
        get_fail(t);
        int s_len=strlen(s+1),t_len=strlen(t+1);
        int p=1;
        while(ext[1]<t_len&&s[ext[1]+1]==t[ext[1]+1])++ext[1];
        for(int i=2;i<=s_len;++i){
            if(i+fail[i-p+1]<p+ext[p])ext[i]=fail[i-p+1];
            else{
                int j=ext[p]+p-i;
                if(j<0)j=0;
                while(i+j<=s_len&&j<t_len&&s[i+j]==t[j+1])++j;
                ext[i]=j;
                p=i;
            }
        }
    }
}

int main(){
    scanf("%s%s",S+1,T+1);
    KMP::KMP(S,T);
    KMP::ex_KMP(S,T);
    int s_len=strlen(S+1),t_len=strlen(T+1);
    printf("Array of fail:\n\t");
    for(int i=1;i<=t_len;++i)printf("%d ",KMP::fail[i]);
    printf("\nMatching position:\n\t");
    for(int i=1;i<=s_len;++i)if(KMP::cnt[i]==t_len)printf("%d ",i-t_len+1);
    printf("\nArray of extend:\n\t");
    for(int i=1;i<=s_len;++i)printf("%d ",KMP::ext[i]);
}
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值