HDU 1159 Common Subsequence (动态规划LCS)

LCS 最长公共子序列的运用。

LCS 重点就是理解状态转移方程:对于每一次,都有

dp[i][j]  =  Max  (  dp[i-1][j-1] + match(s1[i],s2[j]),   dp[i-1][j],   dp[i][j-1]   );

i为字符串s1遍历的当前位置,j为字符串s2遍历的当前位置。  dp[i][j]表示,字符串s1到第i个,字符串s2到第j个时,当前最长公共子序列长度。

有3种情况。即: dp[i-1][j-1] + match(s1[i],s2[j])  、  dp[i-1][j]、 dp[i][j-1]  中取最大值。其中match(s1[i],s2[j])  当s1[i]==s2[j]时为1,不相等时为0;

#include<iostream>
using namespace std;
#define Max(a,b,c) (a>b?(a>c?a:c):(b>c?b:c))
char s1[1001],s2[1001];
int dp[101][101];

int match(char a,char b)
{
    if(a==b)return 1;
    return 0;
}
int main()
{
    while(scanf(" %s %s",s1+1,s2+1)!=EOF)      //下标从1开始存储
    {
        int m1,m2;
        m1=strlen(s1+1);
        m2=strlen(s2+1);
        //printf("%d %d\n",m1,m2);
        memset(dp,0,sizeof(dp));
        for(int i=1;i<=m1;i++)
            for(int j=1;j<=m2;j++)
            {        //核心。阶段性取最优值。
                     //dp[i][j]表示当遍历到字符串s1的第i个与字符串s2的第j个时的最优解
                dp[i][j]=Max(dp[i-1][j-1]+match(s1[i],s2[j]),dp[i-1][j],dp[i][j-1]); 
            }
       printf("%d\n",dp[m1][m2]);
    }    
   // system("pause");
    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值