图的最短路径(4种算法)

#ifndef SHORTEST_PATH_H
#define SHORTEST_PATH_H

#include<queue>
#include<limits.h>
#include<memory>
#include"../data_struct/data_struct.h"


/// (1)当权值为非负时,用Dijkstra。
/// (2)当权值有负值,且没有负圈,则用SPFA,SPFA能检测负圈,但是不能输出负圈。
/// (3)当权值有负值,而且可能存在负圈,则用BellmanFord,能够检测并输出负圈。
class graph_shortest_path
{
public:
    /// 迪杰斯特拉算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。
    /// 注意该算法要求图中不存在负权边
    /// 在图论中一个典型的贪心法求最优解的例子就莫过于“最短路径”的问题。
    /// 如果大家已经了解Prim算法,那么Dijkstra算法只是在它的上面延伸了下
    /// 这与贪心选择性质有关(ps:貌似还是动态规划啊,晕了),每次都找一个距源点最近的点(dmin),
    /// 然后将该距离定为这个点到源点的最短路径;但如果存在负权边,那就有可能先通过并不是距源点最近的一个次优点(dmin'),
    /// 再通过这个负权边L(L小于0),使得路径之和更小(dmin'+L小于dmin),则dmin'+L成为最短路径,并不是dmin
    /// 用斐波那契堆的复杂度O(E+VlgV)
    static void dijkstra(const std::shared_ptr<graph_matrix>& graph, uint32_t s,
                         std::vector<int>& dis, std::vector<uint32_t>& pre)
    {
        dis.resize(graph->vertex.size());
        pre.resize(graph->vertex.size());//记录前驱顶点

        std::vector<bool> is_visited(graph->vertex.size(), false);
        for (auto i: graph->vertex)
        {
            dis[i] = graph->matrix[s][i];
            pre[i] = s;
        }

        is_visited[s] = true;
        for (auto i: graph->vertex)
        {
            int mindist = INT_MAX;
            auto u = s; // 找出当前未使用的点j的dist[j]最小值
            for (auto j: graph->vertex)
            {
                if (is_visited[j] == false && dis[j] < mindist)
                {
                    u = j;// u保存当前邻接点中距离最小的点的号码
                    mindist = dis[j];
                }
            }

            is_visited[u] = true;

            for (auto j: graph->vertex)
            {
                if (is_visited[j] != true && graph->matrix[u][j] < dis[j] - dis[u])
                {
                    dis[j] = dis[u] + graph->matrix[u][j];    //更新dist
                    pre[j] = u;                    //记录前驱顶点
                }
            }
        }
    }

    /// Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,
    /// 可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包。
    ///  Floyd算法是一个经典的动态规划算法
    /// 弗洛伊德算法(解决多源最短路径):时间复杂度O(n^3),空间复杂度O(n^2)
    static void floyd(const std::shared_ptr<graph_matrix>& graph,
                      std::vector<std::vector<int>>& dis, std::vector<std::vector<int>>& pre)
    {
        dis.reserve(graph->vertex.size());
        pre.reserve(graph->vertex.size());
        for (auto i: graph->vertex)
        {
            dis[i].reserve(graph->vertex.size());
            pre[i].reserve(graph->vertex.size());
        }

        for (auto i: graph->vertex)
        {
            for (auto j: graph->vertex)
            {
                dis[i][j] = graph->matrix[i][j];
                pre[i][j] = -1;
            }
        }

        for (auto k: graph->vertex)
        {
            for (auto i: graph->vertex)
            {
                for (auto j: graph->vertex)
                {
                    if (dis[i][j] - dis[i][k] > dis[k][j])
                    {
                        dis[i][j] = dis[i][k] + dis[k][ j];
                        pre[i][j] = k;
                    }
                }
            }
        }
    }

    /// Bellman(贝尔曼,动态规划提出者)和Ford(福特)提出了从源点逐次绕过其他顶点,以缩短到达终点的最短路径长度的方法。
    /// Bellman-ford算法是求含负权图的单源最短路径算法,效率很低。
    /// 即进行不停地松弛,每次松弛把每条边都更新一下,若n-1次松弛后还能更新,则说明图中有负环,无法得出结果,
    /// Bellman-ford算法有一个小优化:每次松弛先设一个flag,初值为FALSE,若有边更新则赋值为TRUE,最终如果还是FALSE则直接成功退出。
    /// Dijkstra算法和Bellman算法思想有很大的区别:Dijkstra算法在求解过程中,源点到集合S内各顶点的最短路径一旦求出,则之后不变了,
    /// 修改的仅仅是源点到T集合中各顶点的最短路径长度。Bellman算法在求解过程中,每次循环都要修改所有顶点的dist[ ],
    /// 也就是说源点到各顶点最短路径长度一直要到Bellman算法结束才确定下来。
    /// 首先指出,图的任意一条最短路径既不能包含负权回路,也不会包含正权回路,因此它最多包含|v|-1条边。
    /// 其次,从源点s可达的所有顶点如果 存在最短路径,则这些最短路径构成一个以s为根的最短路径树。
    /// Bellman-Ford算法的迭代松弛操作,实际上就是按顶点距离s的层次,逐层生成这棵最短路径树的过程。
    /// 在对每条边进行1遍松弛的时候,生成了从s出发,层次至多为1的那些树枝。也就是说,
    /// 找到了与s至多有1条边相联的那些顶点的最短路径;对每条边进行第2遍松弛的时候,
    /// 生成了第2层次的树枝,就是说找到了经过2条边相连的那些顶点的最短路径……。因为最短路径最多只包含|v|-1条边,
    /// 所以,只需要循环|v|-1 次。每实施一次松弛操作,最短路径树上就会有一层顶点达到其最短距离,
    /// 此后这层顶点的最短距离值就会一直保持不变,不再受后续松弛操作的影响。
    /// (但是,每次还要判断松弛,这里浪费了大量的时间,这就是Bellman-Ford算法效率底下的原因,也正是SPFA优化的所在)。
    /// 复杂度O(VE),空间复杂度O(E)
    static bool BellmanFord(const std::shared_ptr<graph_matrix>& graph, uint32_t s,
                            std::vector<int>& dis, std::vector<uint32_t>& pre)
    {
        dis.reserve(graph->vertex.size());
        pre.reserve(graph->vertex.size());

        std::vector<bool> is_visited(graph->vertex.size(), false);
        for (auto i: graph->vertex)
        {
            dis[i] = graph->matrix[s][i];
            pre[i] = s;
        }
        auto edges = ToEdges(graph);

        for (uint32_t i = 1; i < graph->vertex.size(); ++i)//松弛(顺序一定不能反~)
        {
            for(auto& edge : edges)
            {
                if (dis[edge->end] - dis[edge->start] > edge->weight)
                {
                    dis[edge->end] = dis[edge->start] + edge->weight;
                    pre[edge->end] = edge->start;
                }
            }
        }

        for (auto& edge : edges)//判断是否含有负权回路
        {
            if (dis[edge->end] - dis[edge->start] > edge->weight)
            {
                return false;
            }
        }

        return true;
    }

    /// Shortest Path Faster Algorithm
    /// 给定一个加权连通图,选取一个顶点,称为起点,求取起点到其它所有顶点之间的最短距离,其显著特点是可以求含负权图的单源最短路径,且效率较高
    /// spfa是求单源最短路径的一种算法,它还有一个重要的功能是判负环
    /// 如果某个点进入队列的次数超过N次则存在负环(SPFA无法处理带负环的图)
    /// 在Bellman-ford算法的基础上加上一个队列优化,减少了冗余的松弛操作,是一种高效的最短路算法
    /// 期望的时间复杂度O(ke), 其中k为所有顶点进队的平均次数,可以证明k一般小于等于2,E为给定图的边集合
    /// SPFA的最坏情况应该是O(VE)  把SPFA看成是个BFS的过程
    static bool SPFA(const std::shared_ptr<graph_matrix>& graph, uint32_t s,
                     std::vector<int>& dis, std::vector<uint32_t>& pre)
    {
        dis.reserve(graph->vertex.size());
        pre.reserve(graph->vertex.size());

        std::vector<bool> is_visited(graph->vertex.size(), false);
        std::vector<uint32_t> num(graph->vertex.size(), 0);

        for (auto i: graph->vertex)
        {
            dis[i] = graph->matrix[s][i];
            is_visited[i] = false;
            pre[i] = s;
            num[i] = 0;
        }

        std::queue<uint32_t> queue;
        is_visited[s] = true; //表示第s个顶点进入数组队
        num[s] = 1; //表示第s个顶点已被遍历一次
        queue.push(s); //第s个顶点入队
        while (!queue.empty())
        {
            auto u = queue.front(); //获取数组队中第一个元素
            queue.pop();

            for (auto i: graph->vertex)
            {
                if (dis[i] - dis[u] > graph->matrix[u][i])
                {
                    dis[i] = dis[u] + graph->matrix[u][i];
                    pre[i] = u;
                    if (is_visited[i] == false)
                    {
                        queue.push(i);
                        is_visited[i] = true;//表示已进入数组队
                        if (++num[i] > graph->vertex.size()) //存在负环
                        {
                            return false;
                        }
                    }
                }
            }

            is_visited[u] = false;
        }
        return true;
    }

    static std::vector<std::shared_ptr<edge>> ToEdges(const std::shared_ptr<graph_matrix>& graph)
    {
        std::vector<std::shared_ptr<edge>> edges;
        for (auto i: graph->vertex)
        {
            for (auto j: graph->vertex)
            {
                if (i != j && graph->matrix[i][j] < INT_MAX)
                {

                    edges.push_back(std::make_shared<edge>(i, j, graph->matrix[i][j]));
                }
            }
        }

        return edges;
    }
};

#endif // SHORTEST_PATH_H

 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值