题目链接:点击打开链接
参考博客:点击打开链接
题目大意:
给你一串匹配的括号,然后可以给括号上色,可以选择上红色,上蓝色,或者不上色。求最终的方案数是多少。
上色有一定的规则:
(1):每一对括号只能其中一个上色。
(2):相邻的两个不能上同样的颜色,可以都不上色。
题意解析:
算是近期接触到难度最大的一道区间dp题。看着别人的代码,最终理解倒是不太困难,就是细节方面太多。要考虑的点很多。
dp[l][r][i][j]表示l到r区间l上i颜色,r上j颜色的方案数。颜色可以用0,1,2来表示,分别表示无色,蓝色,红色。
代码的实现靠递归,刚开始看了大神博客的转移方程以后,直接去写递推式,感觉越写越不对。深搜有时候真的好用。
现在问题就是每一种情况的状态转移方程,代码里详写。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <algorithm>
#include <set>
#define next ne
#define INF 0x3f3f3f3f
using namespace std;
typedef long long ll;
int mod=1e9+7;
int n,m,k;
char a[1000];
int match[1000];
int tmp[1000];
ll dp[710][710][4][4];
void getmatch(int len)
{
int g=0; //这个函数求解一些神奇的东西,也就是
for(int i=0;i<len;i++) //每个括号与它相匹配的扩号是哪一个,
{ //注意不是简单的l是'('和r是')'就行
if(a[i]=='(') //要找到与跟它在序列里"匹配"的扩号的位置
tmp[g++]=i; //具体可以自己打印看一下
else
{
match[i]=tmp[g-1];
match[tmp[g-1]]=i;
g--;
}
}
}
void dfs(int l,int r)
{
if(l+1==r) //这个应该不用多解释了吧
{
dp[l][r][0][1]=1;
dp[l][r][1][0]=1;
dp[l][r][0][2]=1;
dp[l][r][2][0]=1;
return ;
}
if(match[l]==r) //如果l和当前r正好匹配就深搜一下他们的
{ //中间区间,第一次写的时候只是简单判断了
dfs(l+1,r-1); //一下括号是否配对,结果样例都没过
for(int i=0;i<3;i++)
{
for(int j=0;j<3;j++) //搞清楚每个状态,应该很容易理解状态转移方程
{
if(j!=1)
dp[l][r][0][1]=(dp[l][r][0][1]+dp[l+1][r-1][i][j])%mod;
if(i!=1)
dp[l][r][1][0]=(dp[l][r][1][0]+dp[l+1][r-1][i][j])%mod;
if(j!=2)
dp[l][r][0][2]=(dp[l][r][0][2]+dp[l+1][r-1][i][j])%mod;
if(i!=2)
dp[l][r][2][0]=(dp[l][r][2][0]+dp[l+1][r-1][i][j])%mod;
}
}
return ;
}
else
{
int p=match[l]; //如果不配对,找到当前的与它配对的括号
dfs(l,p); //的位置,分为两个区间分别继续搜索
dfs(p+1,r);
for(int i=0;i<3;i++)
{
for(int j=0;j<3;j++)
{
for(int k=0;k<3;k++)
{
for(int q=0;q<3;q++) //方案数等于两区间方案数相乘
{
if(!((k==1&&q==1)||(k==2&&q==2))) //注意此处为判断相邻位置不能同色
dp[l][r][i][j]=(dp[l][r][i][j]+(dp[l][p][i][k]*dp[p+1][r][q][j])%mod)%mod;
}
}
}
}
}
}
int main()
{
while(scanf(" %s",a)!=EOF)
{
memset(dp,0,sizeof(dp));
int len=strlen(a);
getmatch(len); //神奇的函数求一些神奇的东西
dfs(0,len-1);
ll ans=0;
for(int i=0;i<3;i++)
{
for(int j=0;j<3;j++) //找出当前所有方案数总和
{
ans=(ans+dp[0][len-1][i][j])%mod;
}
}
printf("%lld\n",ans);
}
}