当我把公众号作为知识库塞进了智能体后

背景

昨天有一个朋友给我吐槽,说最近用deepseek,哪个平台都卡,我说用腾讯的api效果会好一些。然后在给他链接的时候,发现腾讯元宝也接入了deepseek满血版,还支持联网。

我让它分析 下我的公众号,然后我看到左侧的应用,这里有智能体,我就想都能联网找到的公众号信息了,是不是我可以用公众号的内容做一个知识库?
于是怀着好奇心一步一步的操作。

创建智能体


1,点击右上角的创建智能体

添加知识库

公众号文章知识库

创建以后点击高级设定(我想看下有没有公众号内容,没想到真有)
1,模型设置,选择DeepseekR1,只有混元、deepseekR1:32b、和kimi的模型
2,点击添加知识库

点击创建知识库

1,选择知识库类型为公众号文章
2,给知识库起个名称
3,去微信授权


点击授权以后会出来一个授权二维码,微信扫码即可。


1,授权完成以后,出现对应的公众号
2,选择文章范围
3,新增内容每日更新
4,保存并添加

知识库查看


1, 点击知识库
2, 查看知识库详情


我们可以通过知识库查看解析进度,得吐槽下,解析速度真慢,十几篇文章,快一个小时,还有一篇处理中。

其他知识库

1,我创建了一个文本类型的知识库,用来补充一些信息
2,创建一个问答对类型的知识库,用来记录用户的问题,以及答案

模型设置

1, 我选择了kimi的128k的模型,没有DeepSeek满血模型
2,可以设置回复精准性
3,最大回复长度不变
4,携带上下文轮数,我减到了3

选择DeepSeekR1的时候,提示:当前模型不支持function call功能,无法调用知识库、插件、工作流

最终模型配置如下:

模型额度


1, api调用有1亿token额度,腾讯大气
2,目前在腾讯全域发布,限时免费。

智能体设置

基础设定


1,给智能体起个名称
2,填写下简介
3,设置智能体的回答问题时的规则(给他限定身份,回答知识的引用范围,回答的规则等)
4, 可以开启下一步追问,最好别开
5,用生成一个头像
高级设定终版

1, 选择月之暗色的128k模型
2,添加多个知识库,公众号,用户问答,补充信息三个
3,开启未匹配到知识的时候由大模型回复
4,设置智能体回复参考了那篇文章
5,允许用户根据查看原文
6,可以设置一些关键词

测试验证

问了一个如何本地部署deepseek,看下图,引用到了内容,并且回复的结果也还算满意。

再问一个不存在的问题,如何启动ollama服务,回答的差强人意。

发布

点击右上角的发布按钮

  1. 选择公开范围为所有人可用
  2. 配置下订阅号


1,授权完成后的示意图
2,点击发布

公众号问答。

总结

1,不带推理功能的大模型真是差强人意
2,后续研究下元器里的工作流,使用调用api的方式使用满血DeepSeek-R1模型
3,后续把解决的所有问题都放入到问题库里。

创作不易,辛苦大家动动发财的小手。

if 文章有用: 
    点赞()    # 👍 小手一抖,bug没有
    收藏()    # 📂 防止迷路,代码永驻
    关注()    # 🔔 追更最新内容
else:
    留言吐槽()  # 💬 评论区等你来战
### 将DeepSeek知识库与微信公众号集成 #### 准备阶段 为了成功将DeepSeek知识库与微信公众号集成,需先完成必要的准备工作。前往微信公众平台注册账号,并选择合适的服务号或订阅号类型[^4]。 #### API 接入准备 确保已获取DeepSeek的API访问权限。无论是采用官方API还是通过第三方中转站(如kg),都需要注意API调用可能涉及费用问题。对于稳定性考虑,建议优先选用经过验证更为稳定的API服务提供商[^3]。 #### 功能测试 在完成所有配置和集成之后,进行全面的功能测试至关重要。可以通过模拟用户与DeepSeek进行简单到复杂的对话交互来进行测试。例如: - **基础功能测试** - 发送简单的日常查询请求给DeepSeek,比如“今天天气如何?”以确认微信端能否准确接收到用户的提问并由DeepSeek给出恰当回应。 - **高级功能测试** - 提问较为复杂的内容,“请详细阐述人工智能在医疗领域的应用现状和未来发展趋势,并结合具体案例进行分析”。这一步骤旨在检验DeepSeek处理深层次语义理解和构建结构化回答的能力,同时也考察其回复内容是否能在微信界面内被完整呈现[^1]。 ```python import requests def send_message_to_deepseek(message): url = 'https://api.deepseek.com/v1/chat' headers = {'Authorization': 'Bearer YOUR_API_KEY'} response = requests.post(url, json={"message": message}, headers=headers) return response.json() # 测试消息发送函数 test_messages = ["今天天气如何?", "请详细阐述人工智能在医疗领域的应用现状和未来发展趋势"] for msg in test_messages: reply = send_message_to_deepseek(msg) print(f"User: {msg}\nBot Reply: {reply['response']}") ``` #### 自动化部署方案推荐 考虑到非技术人员的需求,可借助像扣子Coze这样的平台简化整个流程。这类工具允许即使是没有编程技能的人也能够迅速搭建起基于AI的知识问答系统,并将其无缝对接至微信环境之中,从而实现高效的客户支持和服务自动化[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值